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Abstract— We study a distributed resilient submodular max-
imization problem in which a group of robots collaboratively
choose a strategy set. The global objective is to maximize a
submodular function on the strategy set with the existence of
a known number of robot attacks or failures. When choosing
a strategy, each robot communicates with other robots within
a local group, due to its limited communication ability. For
such problem, we propose a distributed resilient submodular
maximization algorithm that takes into account both the limited
information available for the robots and the attacks or failures.
In particular, our algorithm guarantees an approximation
performance that is within a constant factor of the optimal
strategy. Our analysis resorts to the curvature of the submod-
ular set function, and proves that the algorithm is scalable,
runs in polynomial time and is faster than its centralized
communication manner. We demonstrate the efficacy of our
algorithm through both Matlab and Gazebo simulation with a
multi-robot target tracking scenario.

I. INTRODUCTION

Devising a resilient system is receiving an increasing
interest in academia [1], [2], [3] as well as industry [4],
[5], [6]. With resiliency, we take the view that cyber attacks
are unavoidable. As such, some part of the system is likely
to be compromised. What we would like is to ensure the
overall system continues to perform at an acceptable level
despite these compromised assets. Motivated by this goal,
researchers have developed algorithms for improving the
resiliency of the system in a variety of areas such as smart
grid and power systems [1], [7], IT data and infrastructure
protection [5], [6], medical monitoring [8], control sys-
tems [2], [9] and robotics [3], [10].

In this paper, we focus on the resiliency in multi-robot
systems where robots interact locally with their nearest
neighbors to collaboratively achieve certain goals against
attacks or failures 1. We take into account the similar settings
of attacks and the distributed communication manner as
presented in the multi-robot formation studies [3], [11], [12].
In particular, we consider that robots can fail or its sensors
can get attacked [13], and the robot has the limited sensing
and communication range so that it can make decisions based
on the local information only [14], [15]. We handle these two
challenges i.e., attacks and local communication, simultane-
ously in a submodular maximization problem where a group
of robots makes collaborative decisions. The robots can
only communicate locally due to the limited communication

The authors are with the Department of Electrical and Computer Engi-
neering, Virginia Tech USA. {lfzhou, tokekar}@vt.edu.

This material is based upon work supported by the National Science
Foundation under Grant No. 479615.

1Henceforth, we refer to “attack” and “failure” interchangeably.

range. They collaboratively select a set of strategies to
maximize a common submodular objective function against
a known number of the worst-case attacks. Inspired by the
“partition” stage of the distributed greedy approach in [16],
we let each robot first identify a local unique group it
belongs to based on the limited communication range. In
this way, the whole robot network can be partitioned into
smaller separated subgroups. Then the robots within the
same subgroup collaboratively take a resilient approach to
play against the worst-case attacks [17], [10], ignoring the
strategies from other groups. With this approach, all cliques
of robots can perform in parallel.

Contributions. We make the following contributions:

• (Problem) We formalize the problem of distributed
resilient submodular maximization against the worst-
case attacks by communicating within local group only.

• (Solution) We propose the first algorithm for such
problem, and prove it has the following properties:

– provable approximation performance: the algo-
rithm ensures a constant-factor approximation per-
formance of the optimal for any objective function
that is monotone and submodular;

– minimal running time: the algorithm is scalable
and runs in polynomial-time. It is faster than the
centralized communication, especially when the
communication graph is sparse;

• (Empirical Evaluation) We illustrate the performance
for resilient target tracking against robot attacks, and
the efficacy of our approach through both Matlab and
Gazebo simulations.

Overall, in this paper we go beyond the centralized re-
silient submodular maximization [18], [17], [19], [10] by
proposing the distributed submodular maximization; and go
beyond the distributed submodular maximization [16], [14],
[15] by proposing the resilient submodular maximization.

Notations: Given a set A, 2A denotes its power set; |A|
denotes A’s cardinality; given another set B, the set A \ B
denotes the set of elements in A that are not in B. A complete
graph is a simple undirected graph in which every pair of
distinct vertices is connected by a unique edge. A clique in
graph G is a subgraph of G that is complete. Denote K(G)
as the number of the non-overlapping cliques in graph G.
Denote ω(G) as the clique number of graph G, which is the
number of vertices of the largest clique in graph G.



II. PROBLEM FORMULATION

In this section, we propose a distributed resilient submod-
ular maximization problem. We are given N robots on a
communication graph G with nodes R = {1, · · · , N}. Each
robot i ∈ R has a candidate strategy set Xi. The robot
must choose one strategy (action) si ∈ Xi, which follows
a partition matroidal constraint [20]. We assume the number
of candidate strategies for each robot i, |Xi| = D, i ∈ R.
We define a ground set of strategies X =

⋃
i Xi and are

given a normalized, monotone (increasing) and submodular
function, f : 2X → R≥0. The function value of a strategy
si is f({si}) and its shorthand, f(si). With a slight abuse
of notation, we denote the set of robots with strategy set T
as R(T ) and denote the strategy set for a set of robots C as
X (C). Evidently, R = R(X ) and X = X (R).

We consider robots choosing their strategies in a dis-
tributed communication manner. The robots can only com-
municate and share strategies within the same local group.
We call this local group as the clique (of robots) on the graph
G. There is no communication allowed (or required) between
cliques. Denote S =

⋃
i∈N si as the strategy set selected by

all cliques of robots. Denote Sk and nk as the strategy set and
the number of robots in each clique k, k ∈ {1, · · · ,K(G)}.
We assume there exists a known number of the worst-case
attacks, α, to the whole robot team. If the robot i is attacked,
its strategy si will stop contributing to the function f(·).
Formally, an adversary attacks the robot team by removing
a subset of trajectories, A, from the trajectory set S. After
the attack, the function value on the trajectory set S, f(S)
is reduced to f(S \ A). We also assume that the number of
attacks, α, is less than the number of total robots, N . Each
clique only knows the total number of the attacks, α, and has
no idea of how α attacks are distributed among cliques. The
objective is to maximize a submodular function defined on
the strategy set selected by the robots against the worst-case
attacks. We propose the problem as below:

Problem 1 (Distributed Resilient Submodular Maximiza-
tion).

max
S⊆V,|S|≤N

min
A⊆S,|A|≤α

f(S \ A) :

|S ∩ Xi| = 1, ∀i ∈ R;
S = S1 ∪ · · · ∪ SK(G), |Sk| ≤ nk;

n1 + · · ·+ nK(G) = N ;

|A| ≤ α, α < N,

(1)

where |S ∩ Xi| = 1 denotes a partition matroid constraint
that each robot i must choose one strategy from its strategy
set Xi. The constraint |A| ≤ α captures the problem
assumption that at most α robots in the network can fail
or get attacked.

III. ALGORITHM

We present our main algorithm for solving Problem 1 in
Algorithm 1. Since we assume that robots select strategies
based on the information within the same clique, we first

Fig. 1. A graph G contains 10 robots and 4 cliques.

introduce related approaches to partition the communication
graph into separated subgroups.

A. Clique Cover

We assume each robot has a limited communication range
and can communicate with other robots within its com-
munication range. We set the communication ranges of all
the robots to be equal. Then the underlying communication
topology of the robots is an undirected communication graph.
Given this communication setup, we propose a distributed
algorithm to partition the robot communication graph into
separated cliques (in the full version of this paper2). Notably,
this clique partition problem is also called “non-overlapping
clique cover” in the literature, which is NP-hard even for a
centralized solution [21]. Thus, we assume for a stationary
communication graph, each robot knows its unique clique.
If the communication is dynamic, each robot can identify its
unique clique by our distributed clique cover algorithm or
other related algorithms. After each robot identifies its unique
clique, the robots together formulate an undirected commu-
nication graph G with non-overlapping cliques. We show
an example of the communication network in Fig. 1 where
graph G contains 10 robots and 4 cliques, C1(G), · · · , C4(G).
Notably, a clique can have a single robot, say C2(G).

B. Distributed Resilient Submodular Maximization Algo-
rithm

We then describe our distributed resilient submodular
maximization algorithm in Algorithm 1.

After the non-overlapping clique cover, all cliques of
robots work in parallel to perform against the attacks (line 2).
Notably, each clique of robots only knows the total number
of attacks, α for the whole robot network G. It does not
know how α attacks are distributed among the cliques. Thus,
each clique conjectures the worst-case scenario and makes
the most conservative guessing. That is, each clique Ci(G)
considers the number of attacks as α in it.

1) If the number of attacks α is less than its size (line 3),
it sets the number of attacks as α. A resilient algorithm
is executed by a combination of an oblivious decision
(lines 4-9) and a greedy decision (lines 10-15).

2) If the number of attacks is larger than the clique’s size
(line 16), the clique sets the number of attacks as its
size. Only an oblivious decision is made (lines 17-22).

2A full version of this paper involving a distributed clique cover
algorithm, all the proofs, and Matlab simulation is available online:
https://www.raas.ece.vt.edu/wordpress/wp-content/
uploads/2019/04/MRS19_full.pdf



Algorithm 1: Distributed Resilient Submodular Maxi-
mization

Input: • set of robots R
• robot strategy set Xi, ∀i ∈ R
• objective function f
• number of attacks α

Output: robots’ strategy set S
1: Sk ← ∅; Sok ← ∅; S

g
k ← ∅; k = {1, · · · K(G)}

2: for each clique Ck(G) do
3: if α < |Ck(G)|
4: while |Sok | < α do
5: s ∈ argmaxy∈X (Ck(G)) f(y)
6: if |(Sok ∪ {s}) ∩ Xi| = 1, ∀i ∈ Ck(G)
7: Sok ← Sok ∪ {s}
8: end if
9: end while

10: while |Sgk | < |Ck(G) \ R(Sok)| do
11: s ∈ argmaxy∈X (Ck(G)\R(So

k))

f(Sgk ∪ {y})− f(S
g
k)

12: if |(Sgk ∪ {s}) ∩ Xi| = 1, ∀i ∈ (Ck(G) \ R(Sok)
13: Sgk ← S

g
k ∪ {s}

14: end if
15: end while
16: else
17: while |Sok | < |Ck(G)| do
18: s ∈ argmaxy∈X (Ck(G)) f(y)
19: if |(Sok ∪ {s}) ∩ Xi| = 1, ∀i ∈ Ck(G)
20: Sok ← Sok ∪ {s}
21: end if
22: end while
23: Sgk ← ∅
24: end if
25: Sk = Sok ∪ S

g
k

26: end for
27: S =

⋃K(G)
k=1 Sk

3) The strategy set in this clique is the union set of the
local oblivious set and the local greedy set (line 25).

Overall, the strategy set selected by all the robots i ∈ R is the
union set of the strategy sets from all the cliques (line 27).

IV. PERFORMANCE ANALYSIS

We quantify the performance of Algorithm 1, by bounding
its approximation ratio and the running time.

Theorem 1 (Performance of Algorithm 1). Consider
Problem 1, the notation therein, the notation in Algorithm 1,
and the definitions:

• let f? be the optimal value to Problem 1;
• given a set S as solution to Problem 1, let A?(S) be

a worst-case set removal from S, that is: A?(S) ∈
arg min

A⊆S,|A(S)|≤α
f(S \A). Evidently, a removal from

S corresponds to a set of robot/sensor attacks;

The performance of Algorithm 1 is bounded as follows:

1) (Approximation performance) Algorithm 1 returns a
strategy set S such that each robot selects a strategy
(partition matroid constraint I), and
If K(G) = 1,

f(S \ A?(S))
f?

≥ 1

2
max[1− νf (I),

1

(α+ 1)
,

1

(N − α)
]

(2)
Else, K(G) ≥ 2,

f(S \ A?(S))
f?

≥max[
1− νf (I)

2
,

1

(α+ 1)K(G2)ω(G2)
,

1

(N − α)K(G2)ω(G2)
] (3)

where K(G) and K(G2) are the number of non-
overlapping cliques in graph G and its subgraph G2
(see the definition in the full version), respectively.
ω(G2) is the clique number of subgraph G2. νf (I)
is the curvature of submodular f defined on matroid
constraint I (see the definition in the full version).

2) (Running time) Algorithm 1 runs in O(ω2(G)D2) time.
ω(G) is the clique number of graph G and D is the
number of candidate strategies for each robot.

Approximation performance. The approximation ratio in
Theorem 1 implies Algorithm 1 has the same approximation
performance as the centralized submodular maximization
algorithm [10, Algorithm 1] when the graph G only has one
clique. This is because, in this extreme case, the distributed
communication turns out to be a centralized communication
if all robots communicate within a single clique. When
graph G has more than one clique, the approximation ratio
of Algorithm 1 depends on the number of non-overlapping
cliques and the clique number of its subgraph G2.

Running time. Theorem 1 implies that the running time
of Algorithm 1 is quadratic in the clique number of graph G
and the number of robot’s candidate strategies. Notably, the
centralized resilient algorithm runs in O(N2D2) time [10].
We know the clique number of graph G is less than the total
number of robots N when the graph has more than one clique
(not in the extreme case). Thus, Algorithm 1 runs faster than
the centralized resilient algorithm as long as K(G) 6= 1.

V. SIMULATION

We verify the performances of the proposed algorithms
by a multi-robot target tracking scenario as presented in [22],
[10] where each robot must choose one trajectory from its
candidate trajectory set to track targets. We present both Mat-
lab3 and Gazebo evaluations of our algorithm that demon-
strate the performance and the strength of our approach. Our
Matlab and Gazebo implementations are available online4.

Gazebo simulation. We verify the performance of Algo-
rithm 1 by running the algorithms across multiple time steps.

3Due to the limited space here, we provide an extensive Matlab simulation
studying the effect of the number of robots, the number of attacks, and the
communication range in the full version of this paper.

4https://github.com/raaslab/distributed_
resilient_target_tracking.git



(a) Gazebo environment (b) A top view

Fig. 2. Gazebo simulation setup: 10 aerial robots and 50 ground mobile
targets: (a) Gazebo environment; and (b) A top view: Each robot i ∈ R
(quadrotor model) has 4 possible trajectories (forward, backward, left, and
right). The tracking region of each trajectory is rectangular and has the same
dimensions across all 4 trajectories. We denote the tracking regions for the
forward, backward, left, and right trajectories as C(τ↑i ), C(τ

↓
i ), C(τ

←
i ) and

C(τ→i ) respectively; in particular, the lengths lt and lo denote the dimension
of each rectangular tracking region; and lf denotes the fly length for the
robot. We set lt = lf+lo as the robot’s tracking length. The red pentagrams
indicate the targets.

We consider the kinematics and dynamics of the robots, the
sensing noise, and the actual trajectories of the targets.

We consider a scenario where 10 aerial robots are tasked
to track 50 ground mobile targets (Fig. 2-(a)). We set the
number of attacks α equal to 4 and set the communication
range for robots as rc = 5 units in the gazebo environment.
Notably, we only consider 2D [x, y] coordinates for robots
to identify neighbors by using the communication range.
For a clear visualization, we draw a top view of robots and
targets in Fig. 2-(b). We assume each robot has 4 trajectories
(forward, backward, left, and right), and flies on a different
fixed plane (to avoid collision with other robots). Each robot
has a square filed-of-view lo × lo. Once a robot picks a
trajectory, it flies a distance lf along that trajectory. Thus,
each trajectory has a rectangular tracking region with length
lt = lf + lo and width lo. Moreover, we set the tracking
length lt = 6 and tracking width lo = 3 for all robots. We
assume robots can obtain noisy position measurements of the
targets, and then use a Kalman filter for estimate updating.

We compare the performance of Algorithm 1 with the cen-
tralized resilient algorithm [10], and the centralized greedy
algorithm [22]. For each algorithm, at each time step, each
robot picks one of its 4 candidate trajectories. Then all robots
fly a lf = 3 distance along the selected trajectory. If an attack
happens, we assume the attacked robot’s tracking sensor (e.g,
camera) is blocked; nevertheless, we assume that it can be
active again at the next time step, so that at each round the
worst-case set of α robots is considered attacked. We repeat
this process for 50-time steps.

We capture the performance of each algorithm with the
expected number of targets tracked and the computational
time for all time steps. We compare the algorithms with
respect to the average and the standard deviation of these
two performance indexes. A video for this implementation
is available online5.

5https://youtu.be/cGCUErXESZ0
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Fig. 3. Comparison (average and standard deviation across the 50 rounds)
of Algorithm 1 with the centralized resilient algorithm and the centralized
greedy algorithm. Performance is captured by the expected number of
tracked targets. Fig. 3-(b) compares the running time of three algorithms.
Fig. 3-(c) illustrates the number of cliques is around 3 and the clique number
is around 5 when the communication range rc = 5 units.

Results. The comparison results are reported in Fig. 3.
The following observations from Fig. 3 are due:

a) Close-to-centralized communication of Algorithm 1 and
better than the centralized greedy algorithm: Fig. 3-(a) shows
that the number of targets tracked by Algorithm 1 is close to
that of the centralized resilient algorithm, and is larger than
that of the centralized greedy algorithm when the number of
cliques and clique number of graph G are 3 and 5 on average
(Fig. 3-(c)).

b) Superior-to-centralized algorithms in the running time:
Fig. 3-(b) shows Algorithm 1 runs faster than two centralized
communication algorithms when the number of cliques and
clique number of graph G are 3 and 5 on average (Fig. 3-(c)).

All in all, Algorithm 1 achieves a close-to-centralized
communication performance and runs faster.

VI. CONCLUSION

We studied a submodular maximization problem where a
group of decision makers with a limited communication abil-
ity, collaboratively select strategies to maximize a common
objective function against a known number of the worst-case
attacks. We proposed a distributed resilient algorithm that
has a provable performance guarantee and runs efficiently
in polynomial time for such problem. We demonstrated the
performance of our algorithm by implementing a multi-robot
target tracking scenario in both Matlab and Gazebo simu-
lations. Notably, the results of this paper can be extended



to any other submodular maximization applications involved
with a group of decision makers with limited information to
play against attacks.
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