
Distributed Attack-Robust Submodular Maximization
for Multi-Robot Planning

Lifeng Zhou,1 Vasileios Tzoumas,2 George J. Pappas,3 Pratap Tokekar4

Abstract— We aim to guard swarm-robotics applications
against denial-of-service (DoS) failures/attacks that result in
withdrawals of robots. We focus on applications requiring the
selection of actions for each robot, among a set of available ones,
e.g., which trajectory to follow. Such applications are central in
large-scale robotic/control applications, e.g., multi-robot motion
planning for target tracking. But the current attack-robust
algorithms are centralized, and scale quadratically with the
problem size (e.g., number of robots). Thus, in this paper,
we propose a general-purpose distributed algorithm towards
robust optimization at scale, with local communications only.
We name it distributed robust maximization (DRM). DRM proposes
a divide-and-conquer approach that distributively partitions
the problem among K cliques of robots. The cliques optimize
in parallel, independently of each other. That way, DRM also
offers significant computational speed-ups up to 1/K2 the
running time of its centralized counterparts. K depends on
the robots’ communication range, which is given as input to
DRM. DRM also achieves a close-to-optimal performance, equal to
the guaranteed performance of its centralized counterparts. We
demonstrate DRM’s performance in both Gazebo and MATLAB
simulations, in scenarios of active target tracking with swarms
of robots. We observe DRM achieves significant computational
speed-ups (it is 3 to 4 orders faster) and, yet, nearly matches
the tracking performance of its centralized counterparts.

I. INTRODUCTION

Safe-critical scenarios of surveillance and exploration of-
ten require both mobile agility, and fast capability to detect,
localize, and monitor. For example, consider the scenarios:

• Adversarial target tracking: Track adversarial targets
that move across an urban environment, aiming to escape; [2]

• Search and rescue: Explore a burning building to
localize any people trapped inside. [3]

Such scenarios can greatly benefit from teams of mobile
robots that are agile, act as sensors, and plan their actions
rapidly. For this reason, researchers are pushing the frontier

1The author is with the Department of Electrical and Com-
puter Engineering, Virginia Tech, Blacksburg, VA 24061 USA (email:
lfzhou@vt.edu).

2The author is with the Laboratory of Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA (email:
vtzoumas@mit.edu).

3The author is with the Department of Electrical and Systems Engi-
neering, University of Pennsylvania, Philadelphia, PA 19104 USA (email:
pappagsg@seas.upenn.edu).

4The author was with the Department of Electrical and Computer
Engineering, Virginia Tech, Blacksburg, VA 24061 USA when part of the
work was completed. He is currently with the Department of Computer
Science, University of Maryland, College Park, MD 20742, USA (email:
tokekar@umd.edu).

This work is supported by the ARL CRA DCIST, the National Science
Foundation under Grant No. 479615, and the Office of Naval Research under
Grant No. N000141812829.

A preliminary version of this paper has been accepted as a 2-page
extended abstract at the International Symposium on Multi-Robot and Multi-
Agent Systems [1].

on robotic miniaturization and perception [2]–[8], to enable
mobile agility and autonomous sensing; and develop dis-
tributed coordination algorithms [9]–[13], to enable multi-
robot planning, i.e., the joint optimization of robots’ actions.

Particularly, distributed planning algorithms (instead of
centralized) are especially important when one wishes to
deploy large-scale teams of robots; e.g., at the swarm level
with tens or hundreds of robots. One reason is the distributed
algorithms scale better for larger numbers of robots than
their centralized counterparts [9]. And another one, equally
important, is that in large-scale teams, not all robots can
communicate with each other, but only with the robots within
a certain communication range.

However, the safety of the above critical scenarios can
still be at peril. For example, robots operating in adversarial
scenarios may get cyber-attacked or simply incur failures,
both events resulting in a withdrawal of robots from the task.
Hence, in such adversarial environments, distributed attack-
robust planning algorithms become necessary.1

In this paper, we formalize a general framework for
distributed attack-robust multi-robot planning for tasks that
require the maximization of submodular functions, such as in
active target tracking with multiple-robots [14].2 Particularly,
we focus on worst-case attacks that can result in up to α
robot withdrawals from the task.

Attack-robust multi-robot planning is computationally
hard and requires accounting for all possible α withdrawals,
a problem of combinatorial complexity. Importantly, even
in the presence of no withdrawals, the problem of multi-
robot planning is NP-hard [16]. All in all, the necessity for
distributed attack-robust algorithms, and the inherent com-
putational hardness motivates our goal in this paper: to pro-
vide a distributed, provably close-to-optimal approximation
algorithm. To this end, we capitalize on recent algorithmic
results on centralized attack-robust multi-robot planning [17]
and present a distributed attack-robust algorithm.

Related work. Researchers have developed several dis-
tributed, but attack-free, planning algorithms, such as [9]–
[13]. For example, [9] developed a decentralized algorithm,
building on the local greedy algorithm proposed in [18,
Section 4], which guarantees a 1/2 suboptimality bound for
submodular objective functions. Particularly, in [9] the robots
form a string communication network, and sequentially
choose an action, given all the actions of the robots that have
chosen so far. Authors of [12] proposed a speed-up of [9]’s

1We henceforth consider the terms attack and failure, equivalent, both
resulting in robot withdrawals from the task at hand.

2Submodularity is a diminishing returns property [15], that captures the
intuition that the more robots participate in a task, the less the gain/return
one gets by adding an extra robot towards the task.

approach, by enabling the greedy sequential optimization
to be executed over directed acyclic graphs, instead of
string ones. In scenarios where the robots cannot observe
all the chosen actions so far, distributed, but still attack-
free, algorithms for submodular maximization are developed
in [19], [20]. Other distributed, attack-free algorithms are
also developed in the machine learning literature on submod-
ular maximization, but towards sparse selection (e.g., for data
selection, or sensor placement) [21], instead of planning.

Recently, researchers have also developed attack-robust
planning algorithms [17], [22]–[24]. With the exception
of [22], the algorithms in [17], [23], [24] are centralized.
Particularly, [22] provide a distributed attack-resilient algo-
rithm against Byzantine attacks (instead of attacks that result
in robot withdrawals). While [17], [23] provide centralized
attack-robust algorithms for active information gathering [23]
and target tracking [17] with multiple robots. Other attack-
robust algorithms, that however apply towards sparse selec-
tion instead of planning, are the [25]–[27].

All in all, towards enabling attack-robust planning in
multi-robot scenarios, where local inter-robot communication
can be necessary, and real-time performance with central-
ized planning is hard to maintain as the number of robots
increases, we make the following contributions on attack-
robust distributed multi-robot planning.

Contributions. We introduce the problem of distributed
attack-robust submodular maximization for multi-robot plan-
ning, and provide an algorithm, named distributed robust
maximization (DRM). DRM distributively partitions the prob-
lem among K cliques of robots, where all robots are within
communication range. Then, naturally, the cliques optimize
in parallel, using [17, Algorithm 1]. We prove for DRM:

a) System-wide attack-robustness: DRM is valid for any
number α of worst-case attacks;

b) Superior running time: DRM offers significant com-
putational speed-ups, up to 1/K2 the running time of its
centralized counterparts. K depends on the inter-robot com-
munication range, which is given as input to DRM.

c) Near-to-centralized approximation performance:
Even though DRM is a distributed, faster algorithm than
its state-of-the-art centralized counterpart [17, Algorithm 1],
DRM achieves a near-to-centralized performance, having a
suboptimality bound equal to [17, Algorithm 1]’s.

Numerical evaluations. We present Gazebo and MAT-
LAB evaluations of DRM, in scenarios of active target track-
ing with swarms of robots. All simulation results demonstrate
DRM’s speed-up benefits: DRM runs 3 to 4 orders faster
than its centralized counterpart in [17], achieving running
times 0.5 to 1.5msec for 100 robots. And, yet, DRM exhibits
negligible deterioration in performance (target coverage).

All proofs are given in the appendix.

II. PROBLEM FORMULATION

We formalize the problem of distributed attack-robust
submodular maximization for multi-robot planning. At each
time-step, the problem asks for assigning actions to the
robots, to maximize an objective function despite attacks.
For example, in active target tracking with aerial robots
(see Fig. 1). The robots’ possible actions are their motion

(a) Targets’ attacks can block
robots’ field-of-view

(b) Robots’ choose trajectory from a
set of motion primitives

Fig. 1. In target tracking with aerial robots, the robots are mounted with
down-facing cameras to track mobile targets (depicted as dots in (a) and
(b)). The targets have the ability to block some of the robots’ cameras.
At each time-step, each robot has a set of motion primitives to choose as
its trajectory (each possibly covering different targets). For example, in (b)
robot 1 has 3 motion primitives, {x11, x21, x31}, and robot 2 has 4 motion
primitives, {x12, x22, x32, x42}, where x11 covers 2 targets, {t2, t3}, and x22
covers 4 targets, {t1, t2, t3, t4}. In combination, however, the two motion
primitives totally cover 4 targets, {t1, t2, t3, t4}.

primitives; the objective function is the number of covered
targets; and the attacks are field-of-view blocking attacks.

We next introduce our framework in more detail:3

a) Robots: We consider a multi-robot team R. At a
given time-step, pi is robot i’s position in the environment
(i ∈ R). We define P , {p1, . . . , p|R|}.

b) Communication graph: Each robot communicates
only with those robots within a prescribed communication
range. Without loss of generality, we assume all robots
to have the same communication range rc. That way, an
(undirected) communication graph G = {R, E} is induced,
with nodes the robots R, and edges E such that (i, j) ∈ E
if and only if ‖pi− pj‖2 ≤ rc. The neighbors of robot i are
all robots within the range rc, and are denoted by Ni.

c) Action set: Each robot i has an available set of
actions to choose from; we denote it by Xi. The robot can
choose at most 1 action at each time, due to operational con-
straints; e.g., in motion planning, Xi denotes robot i’s motion
primitives, and the robot can choose only 1 motion primitive
at a time to be its trajectory. For example, in Figure 1-(b)
we have 2 robots, where X1 = {x11, x21, x31} (and robot 1
chooses x11 as its trajectory) and X2 = {x12, x22, x32, x42} (and
robot 2 chooses x22 as its trajectory). We let X ,

⋃
i∈R Xi.

Also, S ⊆ X denotes a valid assignment of actions to all
robots. For instance, in Figure 1-(b), S = {x11, x22}.

d) Objective function: The quality of each S is quanti-
fied by a non-decreasing and submodular function f : 2X →
R. For example, this is the case in active target tracking with
mobile robots, when f is the number of covered targets [16].
As shown in Figure 1-(b), the number of targets covered by
the chosen actions, S = {x11, x22}, is f(S) = 4.

e) Attacks: At each time, we assume the robots en-
counter worst-case attacks. We assume the maximum number
of anticipated attacks to be known and denote it by α.

Problem 1 (Distributed attack-robust submodular maximiza-
tion for multi-robot planning). The robots, by exchanging
information only over the communication graph G, assign

3Notations. Calligraphic fonts denote sets (e.g., A). 2A denotes A’s
power set, and |A| its cardinality. A \ B are the elements in A not in B.

Algorithm 1: Distributed robust maximization (DRM).
Input: Robots’ available actions Xi, i ∈ R; monotone and

submodular f ; attack number α.
Output: Robots’ actions S.

1: Partition G to cliques C1, . . . , CK by calling
DCP(P, rc);

2: Sk ← ∅ for all k = {1, . . . ,K};
3: for each clique Ck in parallel, do
4: if α < |Ck| then
5: Sk = central-robust(

⋃
i∈Ck Xi, f, α);

6: else
7: Sk = central-robust(

⋃
i∈Ck Xi, f, |Ck|);

8: return S =
⋃K
k=1 Sk.

an action to each robot i ∈ R to maximize f against α
worst-case attacks/failures:

max
S⊆X

min
A⊆S

f(S \ A)

s.t. |S ∩ Xi| = 1, for all i ∈ R;
|A| ≤ α,

(1)

where A corresponds to the actions of the attacked robots.
The first constraint ensures only 1 action is chosen per robot.

Problem 1 is equivalent to a two-stage perfect information
sequential game [28, Chapter 4] between the robots and an
attacker. Particularly, the robots first select S, and, then, the
attacker, after observing S, selects the worst-case A.

III. A DISTRIBUTED ALGORITHM: DRM

We present Distributed Robust Maximization (DRM), a
distributed algorithm for Problem 1 (Algorithm 1). DRM
executes sequentially two main steps: distributed clique
partition (DRM’s line 1), and per clique attack-robust op-
timization (DRM’s lines 2-8). During the first step, the robots
communicate with their neighbors to partition G into cliques
of maximal size (using Algorithm 2, named DCP in DRM’s
line 1).4 During the second step, each clique computes
an attack-robust action assignment (in parallel with the
rest), using the centralized algorithm in [17] —henceforth,
we refer to the algorithm in [17] as central-robust.
central-robust takes similar inputs to DRM: a set of
actions, a function, and a number of attacks.

We describe DRM’s two steps in more detail below; and
quantify its running time and performance in Section IV.

A. Distributed clique partition

We present the first step of DRM, namely, distributed
clique partition (DRM’s line 1, that calls DCP, whose pseudo-
code is presented in Algorithm 2). Notably, the problem
is inapproximable in polynomial time, since even finding
a single clique of maximum size is inapproximable (unless
NP=P) [29] (even in a centralized way).

4A clique is a set of robots that can all communicate with each other.

Algorithm 2: Distributed clique partition (DCP).
Input: Robots’ positions P; communication range rc.
Output: Clique partition of graph G.

1: Given P and rc, find communication graph G;
2: For each i ∈ R, find a maximal clique Ci containing
i by calling PerVrtx-MaxClique(G);

3: for each robot i do
4: Share Ci with each neighbor j ∈ Ni (and receive

all Cj from neighbors);
5: for all neighbors j ∈ Ni do
6: if |Ci| ≥ |Cj | then
7: Cj ← Cj \ (Ci

⋂
Cj);

8: else
9: Ci ← Ci \ (Ci

⋂
Cj);

10: return Generated cliques.

DCP builds on [30, Algorithm 2], which finds for each ver-
tex in a graph G a clique containing the vertex (DCP’s line 2).
We refer to [30, Algorithm 2] as PerVrtx-MaxClique in
DCP. The cliques returned by PerVrtx-MaxClique can
overlap with each other, since PerVrtx-MaxClique re-
turns as many cliques as vertices/robots. In order to separate
those cliques, in DCP’s lines 3-9 each robot communicates
with its neighbors once, during which: a) each robot shares
its clique with its neighbors (DRM’s line 4); b) robot and
its neighbor follow a partition rule that, from their two
cliques, the smaller one will lose the overlapped robots
(DCP’s lines 6-9). That way, DCP aims to partition G to fewer
and larger cliques. The generated non-overlapping cliques are
returned by DCP’s line 10.

B. Per clique attack-robust optimization

We now present DRM’s second step: per clique attack-
robust optimization (DRM’s lines 2-8). The step calls
central-robust as subroutine, and therefore we recall
its steps here from [17]: central-robust takes as input
the available actions of a set of robots R′ ⊆ R (i.e., the⋃
i∈R′ Xi), a monotone submodular f , and a number of

attacks α′ ≤ α, and constructs an action assignment S ′ by
following a two-step process. First, it tries to approximate the
anticipated worst-case attack to S ′, and, to this end, builds a
“bait” set as part of S ′. Particularly, the bait set is aimed to
attract all attacks at S ′, and for this reason, it has cardinality
α′ (the same as the number of anticipated attacks). In more
detail, central-robust includes an action x ∈

⋃
i∈R′ Xi

in the bait set (at most 1 action per robot, per Problem 1)
only if f({x}) ≥ f({x′}) for any other x′ ∈

⋃
i∈R′ Xi.

That is, the bait set is composed of the “best” α′ single
actions. In the second step, central-robust a) assumes
the robots in the bait set are removed from R′, and then
b) greedily assigns actions to the rest of the robots using
the centralized greedy in [18, Section 2] which ensures a
near-optimal assignment (at least 1/2 close to the optimal).

In this context, DRM’s second step is as follows: as-
suming the clique partition step returns K cliques (DRM’s
line 1), now each clique in parallel with the others com-

(a) A communication graph G of 15 robots (b) DCP partitions G into 5 cliques (c) Each clique runs central-robust

Fig. 2. Qualitative description of DRM’s steps over the communication graph G in subfigure (a), composed of 15 robots. The number of anticipated attacks
is considered to be α = 2. In the first step, we assume DCP (DRM’s line 1) partitions G into 5 cliques, as shown in subfigure (b). In the second step, all
5 cliques perform central-robust in parallel. Particularly, the cliques {(1, 2), (8)}, since α is larger than or equal to their size, consider that all of
their robots will be attacked, and as a result they select all of their robots as baits (depicted with red in subfigure (c)), per central-robust. In contrast,
the remaining 3 cliques, since α is smaller than their size, they select α of their robots as baits. The remaining robots (depicted with blue in subfigure
(c)) of each clique choose their actions greedily, independently of the other cliques, and assuming that the red robots in their clique do not exist.

putes an attack-robust assignment for its robots using
central-robust (DRM’s lines 3-8). To this end, the
cliques need to assess how many of the α attacks each will
incur. If there is no prior on the attack generation mechanism,
then we consider each clique assumes a worst-case scenario
where it incurs all the α attacks. Otherwise, we consider there
is a prior on the attack mechanism such that each clique k
infers it will incur αk ≤ α attacks. Without loss of generality,
in DRM’s pseudo-code in Algorithm 1 we present the former
scenario, where αk = α across all cliques; notwithstanding,
our theoretical results on DRM’s performance (Section IV)
hold for any αk such that

∑K
k=1 αk ≥ α. Overall, DRM’s

lines 3-8 are as follows (see Fig. 2 for an example):
a) DRM’s lines 4-5 (α < |Ck|): If α is less than

the clique’s size (DRM’s line 4), then the clique’s robots
choose actions by executing central-robust on the
clique assuming α attacks (DRM’s line 5).

b) DRM’s lines 6-7 (α ≥ |Ck|): But if α is larger than
the clique’s size (DRM’s line 6), then the clique’s robots
choose actions by executing central-robust on the
clique assuming |Ck| attacks (DRM’s line 5); i.e., assuming
that all clique’s robots will be attacked.

c) DRM’s line 8: All in all, now all robots have assigned
actions, and S is the union of all assigned actions across all
cliques (notably, the robots of each clique k know only Sk,
where Sk is per the notation in DRM).

To close the section, we note that DRM is valid for any
number of attacks since central-robust in [17].

IV. PERFORMANCE ANALYSIS

We now quantify DRM’s performance, by bounding its
computational and approximation performance. To this end,
we use the following notion of curvature for set functions.

A. Curvature
Definition 1 (Curvature [31]). Consider non-decreasing
submodular f : 2X 7→ R such that f(x) 6= 0, for any
x ∈ X \ {∅} (without loss of generality). Also, denote by
I the collection of admissible sets where f can be evaluated
at. Then, f ’s curvature is defined as

νf , 1−min
S∈I

min
x∈S

f(S)− f(S \ {x})
f(x)

. (2)

The curvature, νf , measures how far f is from being
additive. Particularly, Definition 1 implies 0 ≤ νf ≤ 1, and
if νf = 0, then f(S) =

∑
x∈S f({x}) for all S ∈ I (f

is additive). On the other hand, if νf = 1, then there exist
S ∈ I and x ∈ X such that f(S) = f(S \ {x}) (x has no
contribution in the presence of S \ {x}).

For example, in active target tracking, f is the expected
number of covered targets (as a function of the robot trajec-
tories). Then, f has curvature 0 if each robot covers different
targets from the rest of the robots. In contrast, it has curvature
1 if, e.g., two robots cover the exact same targets.

B. Running time and approximation performance
We present DRM’s running time and suboptimality bounds.

To this end, we use the notation:
• M is the set of robots composing G’s largest clique;
• XM is the set of possible actions of all robots in M;

that is, XM , ∪i∈MXi;
• f? is the optimal value of Problem 1;
• A?(S) is a worst-case removal from S (a removal from
S corresponds to a set of robot/sensor attacks); that is,
A?(S) ∈ argminA⊆S,|A|≤α f(S \ A).

Theorem 1 (Computational performance). DRM runs in
O(|R|) +O(|XM|2) time.

The part O(|R|) corresponds to DRM’s clique partition
step (DRM’s line 1), while O(|XM|2) to DRM’s attack-robust
optimization step (DRM’s lines 2-8). Typically, O(|R|) is
smaller than O(|XM|2), since the latter grows quadratically
fast, and, as a result, we henceforth ignore the former’s
contribution in the running time.

In contrast, the centralized [17, Algorithm 1] runs in
O(|X |2) time. Thus, when XM ⊂ X (which happens when
G is partitioned into at least 2 cliques), then DRM offers a sig-
nificant computational speed-up. The reasons are two-forth:
parallelization of action assignment, and smaller clique
size. Particularly, DRM splits the action assignment among
multiple cliques, instead of performing the assignment in a
centralized way, where all robots form one large clique (the
R). That way, DRM enables each clique to work in parallel,
reducing the overall running time to that of the largest clique
M (Theorem 1). Besides parallelization, the smaller clique
size also contributes to the computational reduction. To

(a) Gazebo environment (b) Rviz environment

Fig. 3. Gazebo simulation setup: 10 aerial robots and 50 ground mobile
targets: (a) Gazebo environment; and (b) Rviz environment. Each robot is
color-coded, along with its coverage region. All robots in the same clique
have the same color. The targets are depicted as white cylindrical markers.

illustrate this, assume G is partitioned to K cliques of equal
size, and all robots have the same number of actions (|Xi| =
|Xj | for all i, j ∈ R). Then, O(|XM|2) = O(|X |2)/K2, that
is, DRM’s running time is smaller by the factor K2 (than the
running time of its centralized counterpart).

Theorem 2 (Approximation performance). DRM returns a
feasible S such that if K ≥ 2, then

f(S \ A?(S))
f?

≥ max

[
1− νf

2
,

1

(α+ 1)K|M|
,

1

(N − α)K|M|)

]
.

(3)

If, instead, K = 1, then DRM is the same as its centralized
counterpart in [17], in which case the following suboptimal-
ity bound holds [17, Theorem 1]:

f(S \ A?(S))
f?

≥ max

[
1− νf

2
,

1

(α+ 1)
,

1

(|R| − α)

]
. (4)

By comparing eq. (3) and eq. (4), and focusing on the νf -
depended bounds, we conclude that even though DRM is a
distributed, faster algorithm than its centralized counterpart,
it still achieves a near-to-centralized performance. At the
same time, DRM’s α-dependent bounds are inversely propor-
tional to the number of cliques, as well as, M’s size.

Generally, Theorem 2 implies DRM guarantees a close-
to-optimal value for any submodular f . Specifically, DRM’s
approximation factor is bounded by the α-depended bounds
(rightmost two bounds in eq. (3)), which are non-zero for any
finite number of robots. Similarly, the curvature-dependent
bound is also non-zero for any f with curvature νf < 1.

V. NUMERICAL EVALUATION

We present DRM’s Gazebo and MATLAB evaluations in
scenarios of active target tracking with swarms of robots.
The implementations’ code is available online.5

Compared algorithms. We compare DRM with two al-
gorithms. First, the centralized counterpart of DRM in [17],
named central-robust (its near-optimal performance
has been extensively demonstrated in [17]). The second

5https://github.com/raaslab/distributed_
resilient_target_tracking.git

algorithm is the centralized greedy algorithm in [18], named
central-greedy. The difference between the two algo-
rithms is that the former is attack-robust, whereas the latter
is attack-agnostic. For this reason, in [17] we demonstrated,
unsurprisingly, that central-greedy has inferior perfor-
mance to central-robust in the presence of attacks.
However, we still include central-greedy in the com-
parison, to highlight the differences among the algorithms
both in running time and performance.

A. Gazebo evaluation over multiple steps with mobile targets

Centralized greedy Centralized robust Distributed robust

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

R
u

n
n

in
g

 t
im

e

(a) Running time

Centralized greedy Centralized robust Distributed robust

12

14

16

18

20

22

24

26

28

N
u

m
b

e
r

o
f

ta
rg

e
ts

 t
ra

c
k
e

d

(b) Number of targets tracked

Fig. 4. Gazebo evaluation (averaged across 50 rounds): The tracking
performance is captured by the number of covered targets per round.

We use Gazebo simulations to evaluate DRM’s performance
across multiple rounds (time-steps). That way, we take into
account the kinematics and dynamics of the robots, as well
as, the fact that the actual trajectories of the targets, along
with the sensing noise, may force the robots to track fewer
targets than expected. Due to the running efficacy of Gazebo
(which is independent of DRM), we focus on small-scale
scenarios of 10 robots. In the MATLAB simulation, we focus
instead on larger-scale scenarios of 100 robots.

Simulation setup. We consider 10 aerial robots that
are tasked to track 50 ground mobile targets (Fig. 3-
(a)). We set the number of attacks α equal to 4, and
the robots’ communication range to be rc = 5 me-
ters. We also visualize the robots, their field-of-view, their
cliques, and the targets using the Rviz environment (Fig. 3-
(b)). Each robot i has 4 candidates trajectories, Xi =
{forward, backward, left, right}, and flies on
a different fixed plane (to avoid collision with other robots).
Each robot has a square filed-of-view lo × lo. Once a robot
picks a trajectory, it flies a distance lf along that trajectory.
Thus, each trajectory has a rectangular tracking region with
length lt = lf + lo and width lo. We set the tracking length
lt = 6, and tracking width lo = 3 for all robots. We assume
robots obtain noisy position measurements of the targets, and
then use a Kalman filter to estimate the target’s position. We
consider f to be the expected number of targets covered,
given all robots chosen trajectories (per round).

For each of the compared algorithms, at each round, each
robot picks one of its 4 trajectories. Then, the robot flies a
lf = 3 meters along the selected trajectory.

When an attack happens, we assume the attacked robot’s
tracking sensor (e.g., camera) to be turned-off; nevertheless,

0 50 100 150 200

0

20

40

60

80

100

120

140

160

180

200

(a) 30 robots with rc = 90 (b) 100 robots with rc = 50

Fig. 5. MATLAB evaluation: Examples of clique formulations (Algo-
rithm 2) across various numbers of robots and communication ranges rc.

we assume it can be active again at the next round. The
attack is a worst-case attack, per Problem 1’s framework.
Particularly, we compute the attack via a brute-force algo-
rithm, which is viable for small-scale scenarios (as this one).

We repeat for 50 rounds. A video is available online.6

Results. The results are reported in Fig. 4. We observe:
a) Superior running time: DRM runs considerably faster

than both central-robust and central-greedy: 3
orders faster than the former, and 4 than the latter, with
average running time 0.1msec (Fig. 4-(a)).

b) Near-to-centralized tracking performance: Despite that
DRM runs considerably faster, it maintains near-to-centralized
performance: DRM covers on average 20 targets per round,
while central-robust covers 20.2 (Fig. 4-(b)). As ex-
pected, the attack-agnostic central-greedy performs
worse than all algorithms, even being centralized.

B. MATLAB evaluation over one step with static targets
We use MATLAB simulations to evaluate DRM’s per-

formance in large-scale scenarios. Specifically, we evaluate
DRM’s running time and performance for various numbers of
robots (from 10 to 100) and communication ranges (resulting
from as few as 5 cliques to as many as 30 cliques). We
compare all algorithms over a single execution round.

Simulation setup. We consider N mobile robots, and 100
targets. We vary N from 10 to 100. For each N , we set
the number of attacks equal to bN/4c, bN/2c and b3N/4c.
Similarly to the Gazebo simulations, each robot moves on
a fixed plane, and has four possible trajectories: forward,
backward, left and right. We set lt = 10 and lo = 3
for all robots. We randomly generate the positions of the
robots and targets in a 2D space of size [0, 200] × [0, 200].
Particularly, we generate 30 Monte Carlo runs (for each N).
We assume that the robots have available estimates of targets’
positions. For each Monte Carlo run, all compared algorithms
are executed with the same initialization (same positions of
robots and targets). DRM is tested across four communication
ranges: rc = 30, 50, 70, 90. For a visualization of rc’s effect
on the formed cliques, see Fig. 5, where we present two of
the generated scenarios. All algorithms are executed for one
round in each Monte Carlo run.

6https://youtu.be/T0Hb0UURCLM

Notably, since we consider large-scale scenarios (up to
N = 100 robots, and up to 75 attacks, when N = 100, and
α = b3N/4c), computing the worst-case attack via a brute-
force algorithm is now infeasible (we recall that computing
a worst-case attack is NP-hard, and, as a result, to compute
one in practice, in small-scale scenarios we need to use
a brute-force algorithm, otherwise, in large-scale scenarios
we need to use an approximation algorithm). Herein, given
a trajectory assignment S to all robots, the problem of
computing a worst-case attack is a monotone submodular
optimization problem, which can be solved near-optimally
using the greedy algorithm in [15]. Therefore, we henceforth
consider greedy attacks, instead of worst-case attacks.

Results. The results are reported in Fig. 6, where we make
the same qualitative conclusions as in the Gazebo evaluation:

a) Superior running time: DRM runs several orders faster
than both central-robust and central-greedy:
3 to 4 orders, achieving running time from 0.5msec
to 1.5msec (Figs. 6-(a-d)). Notably, we also observe
central-robust runs faster as α increases, which
is due to how central-robust works, that causes
central-robust to become faster as α tends to N [17]).

b) Near-to-centralized tracking performance: Although
DRM runs considerably faster, it retains a tracking per-
formance close to the centralized one (Figs. 6-(e-h)). On
the other hand, unsurprisingly, the attack-agnostic greedy
performs worse than all algorithms.

To summarize, in all simulations above, DRM offered
significant computational speed-ups, and, yet, still achieved
a tracking performance that matched the performance of the
centralized, near-optimal algorithm in [17].

VI. CONCLUSION

We worked towards securing swarm-robotics applications
against worst-case attacks resulting in robot withdrawals.
Particularly, we proposed DRM, a distributed robust sub-
modular optimization algorithm. DRM is general-purpose: it
applies to any Problem 1’s instance. We proved DRM runs
considerably faster than its centralized counterpart, without
compromising approximation performance. We demonstrated
both its running time and near-optimality in Gazebo and
MATLAB simulations of active target tracking.

A future avenue is to investigate distributed algorithms
where each robot communicates with neighboring robots
even across different cliques than its own. That way, the
robots can utilize more information towards an attack-robust
action assignment. Another future avenue is to investigate
distributed algorithms against an unknown number of attacks
(e.g., captured by stochastic processes [32]).

APPENDIX

A. Proof of Theorem 1
DRM’s running time is equal to DCP’s running

time, plus the running time for all cliques to execute
central-robust in parallel. Particularly, in DCP,
each robot first finds its maximal clique using
PerVrtx-MaxClique, which runs in O(|R|) time.
Then, it shares its maximal clique with its neighbors for
graph partition, which also takes O(|R|) time. Thus, DCP

(a) α = bN/4c, rc = 30 (b) α = bN/2c, rc = 50 (c) α = bN/2c, rc = 70 (d) α = b3N/4c, rc = 90

(e) α = bN/4c, rc = 30 (f) α = bN/2c, rc = 50 (g) α = bN/2c, rc = 70 (h) α = b3N/4c, rc = 90

Fig. 6. MATLAB evaluations (averaged across 30 Monte Carlo runs): (a)-(d) depict running time results, for various α and rc values; and (e)-(h) depict
corresponding tracking performance results.

runs in O(|R|) time. Next, since all cliques perform in
parallel, the running time depends on the largest clique,
which gives a O(|XM|2) time (the proof follows the proof
of [17, Part 2 of Theorem 1]). Totally, Algorithm 1 runs in
O(|R|) +O(|XM|2) time.

B. Proof of Theorem 2

We prove Theorem 2 by proving first the νf -dependent
bound and then the α-dependent bound. The proof is based
on [24, Proof of Theorem 1].

We introduce the notation: S? denotes an optimal solution
to Problem 1. Given an action assignment S to all robots
in R, and a subset of robots R′, we denote by S(R′) the
actions of the robots in R′ (i.e., the restriction of S ′ to R′).
And vise versa: given an action assignment S ′ to a subset
R′ of robots, we let R(S) denote this subset (i.e., R(S ′) =
R′). Additionally, we let Sk , S(Ck); that is, Sk is the
restriction of S to the clique Ck selected by DRM’s line 1 (k ∈
{1, . . . ,K}); evidently, S =

⋃K
k=1 Sk. Moreover, we let Sbk

correspond to bait actions chosen by central-robust in
Ck, and Sgk denote the actions for the remaining robots in Ck;
that is, Sk = Sbk ∪S

g
k . If α ≥ |Ck|, then Sgk = ∅. Henceforth,

we let S be the action assignment given by DRM to all robots
in R. Also, we let W be remaining robots after the attack
A?(S); i.e., W , R \ R(A?(S)). Further, we let Wk ,
W∩Ck,Wb

k ,Wk∩R(Sbk), andWg
k ,Wk∩R(Sgk). Finally,

we letWb′

k denote the remaining robots inWb
k after removing

from it any subset of robots with cardinality |R(Sgk) \W
g
k |.

Now the proof follows from the steps:

f(S \ A?(S)) ≥ (1− νf)
∑
r∈W

f(S(r)) (5)

= (1− νf)
K∑
k=1

∑
r∈Wk

f(S(r)) (6)

= (1− νf)
K∑
k=1

 ∑
r∈Wb

k

f(S(r)) +
∑
r∈Wg

k

f(S(r))

 (7)

≥ (1− νf)
K∑
k=1

 ∑
r∈Wb′

k

f(S(r))+

∑
r∈R(Sg

k)\W
g
k

f(S(r)) +
∑
r∈Wg

k

f(S(r))

 (8)

= (1− νf)
K∑
k=1

 ∑
r∈Wb′

k

f(S(r)) +
∑

r∈R(Sg
k)

f(S(r))

 (9)

≥ (1− νf)
K∑
k=1

 ∑
r∈Wb′

k

f(S(r)) + f(Sgk)

 (10)

≥ (1− νf)
K∑
k=1

 ∑
r∈Wb′

k

f(S?(r)) + 1

2
f(S?(R(Sgk)))

(11)

≥ 1− νf
2

K∑
k=1

f(S?(Wk)) (12)

≥ 1− νf
2

f(S?(W)) (13)

=
1− νf

2
f(S? \ A?(S?)). (14)

Ineq. (5) follows from the definition of νf (see [24, Proof
of Theorem 1]). Eqs. (6) and (7) follow from the notation we
introduced above. Ineq. (8) is implied by the fact that any
action in S(Wb

k) is a bait. Eq. (9) holds from the notation.
Ineq. (10) holds by the submodularity of f , which implies
f(A) + f(B) ≥ f(A∪B) for any sets A,B [15]. Ineq. (11)
holds since a) with respect to the left term in the sum, the
robots in the sum correspond to robots whose actions are
baits; and b) with respect to the right term in the sum, the
greedy algorithm that has assigned the actions Sgk guarantees
at least 1/2 the optimal [18]. Ineq. (12) holds again due to
the submodularity of f , as above. The same for ineq. (13).
Eq. (14) follows from the notation, which implies S?(W) ≡
S? \ A?(S?).

We now prove the α-dependent bounds in Theorem 2.

f(S \ A?(S)) ≥ γf(S(W)) (15)

≥ γ 1

K

K∑
k=1

f(S(Wk)) (16)

≥ γ 1

K

K∑
k=1

1

|Wk|
f(S?(Wk)) (17)

≥ γ 1

K
min
k

1

|Wk|

K∑
k=1

f(S?(Wk)) (18)

≥ γ 1

K

1

|M|
f(S? \ A?(S?)) (19)

where γ , max[1
α+1 ,

1
N−α]. Particularly, ineq. (15) holds

from [24, Proof of Theorem 1]. Ineq. (16) holds from the
monotonicity of f : f(S(W)) ≥ f(S(Wk)) for all k ∈
{1, · · · ,K}. For ineq. (17), on the one hand, if S(Wb

k) 6= ∅,
we denote the most profitable action in it as s? ∈ S(Wb

k).
Clearly, f(s?) ≥ 1

|Wk|f(S
?(Wk)). Due to the monotonicity

of f , we have f(S(Wk)) ≥ f(s?) since s? ∈ S(Wk)). Thus,
f(S(Wk)) ≥ f(s?) ≥ 1

|Wk|f(S
?(Wk)). On the other hand,

if S(Wb
k) = ∅, then S(Wk) only contains actions selected

by the greedy algorithm. Note that, by greedy algorithm, the
first section is also the most profitable action. We denote this
action as s1 ∈ Wk. Similarly, we have f(S(Wk)) ≥ f(s1) ≥

1
|Wk|f(S

?(Wk)). Thus, ineq. (17) holds. Ineq. (18) holds
obviously from ineq. (17). Ineq. (19) holds by the definition
of M and from [25, Lemma 2].

REFERENCES

[1] L. Zhou and P. Tokekar, “An approximation algorithm for distributed
resilient submodular maximization,” in International Symposium on
Multi-Robot and Multi-Agent Systems, in print, 2019.

[2] C. Nieto-Granda, J. G. Rogers III, and H. Christensen, “Multi-robot
exploration strategies for tactical tasks in urban environments,” in
Unmanned Systems Technology XV, vol. 8741, 2013, p. 87410B.

[3] V. Kumar and N. Michael, “Opportunities and challenges with au-
tonomous micro aerial vehicles,” in Robotics Research, 2017, pp. 41–
58.

[4] M. Michini, M. A. Hsieh, E. Forgoston, and I. B. Schwartz, “Robotic
tracking of coherent structures in flows,” IEEE Transactions on
Robotics, vol. 30, no. 3, pp. 593–603, 2014.

[5] S. Karaman and E. Frazzoli, “High-speed flight in an ergodic forest,”
in IEEE Intern. Confer. on Robotics and Automation, 2012, pp. 2899–
2906.

[6] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on Robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[7] T. Cieslewski, E. Kaufmann, and D. Scaramuzza, “Rapid exploration
with multi-rotors: A frontier selection method for high speed flight,”
in IEEE/RSJ Int. Conf. on Intel. Robots and Systems, 2017, pp. 2135–
2142.

[8] M. Santos, Y. Diaz-Mercado, and M. Egerstedt, “Coverage control
for multirobot teams with heterogeneous sensing capabilities,” IEEE
Robotics and Automation Letters, vol. 3, no. 2, pp. 919–925, 2018.

[9] N. Atanasov, J. Le Ny, K. Daniilidis, and G. J. Pappas, “Decentralized
active information acquisition: Theory and application to multi-robot
slam,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2015, pp. 4775–4782.

[10] B. Schlotfeldt, D. Thakur, N. Atanasov, V. Kumar, and G. J. Pappas,
“Anytime planning for decentralized multirobot active information
gathering,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp.
1025–1032, 2018.

[11] R. Khodayi-mehr, Y. Kantaros, and M. M. Zavlanos, “Distributed
state estimation using intermittently connected robot networks,” IEEE
Transactions on Robotics, 2019.

[12] M. Corah and N. Michael, “Distributed matroid-constrained submod-
ular maximization for multi-robot exploration: Theory and practice,”
Autonomous Robots, vol. 43, no. 2, pp. 485–501, 2019.

[13] G. Best, O. M. Cliff, T. Patten, R. R. Mettu, and R. Fitch, “Dec-
MCTS: Decentralized planning for multi-robot active perception,” The
International Journal of Robotics Research, vol. 38, no. 2-3, pp. 316–
337, 2019.

[14] P. Dames, P. Tokekar, and V. Kumar, “Detecting, localizing, and
tracking an unknown number of moving targets using a team of mobile
robots,” The International Journal of Robotics Research, vol. 36, no.
13-14, pp. 1540–1553, 2017.

[15] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions–I,” Mathe-
matical programming, vol. 14, no. 1, pp. 265–294, 1978.

[16] P. Tokekar, V. Isler, and A. Franchi, “Multi-target visual tracking with
aerial robots,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2014, pp. 3067–3072.

[17] L. Zhou, V. Tzoumas, G. J. Pappas, and P. Tokekar, “Resilient active
target tracking with multiple robots,” IEEE Robotics and Automation
Letters, vol. 4, no. 1, pp. 129–136, 2019.

[18] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, “An analysis
of approximations for maximizing submodular set functions–II,” in
Polyhedral combinatorics, 1978, pp. 73–87.

[19] B. Gharesifard and S. L. Smith, “Distributed submodular maximization
with limited information,” IEEE Transactions on Control of Network
Systems, vol. 5, no. 4, pp. 1635–1645, 2018.

[20] D. Grimsman, M. S. Ali, J. P. Hespanha, and J. R. Marden, “The
impact of information in greedy submodular maximization,” IEEE
Transactions on Control of Network Systems, 2018.

[21] B. Mirzasoleiman, A. Karbasi, R. Sarkar, and A. Krause, “Distributed
submodular maximization: Identifying representative elements in mas-
sive data,” in Advances in Neural Information Processing Systems,
2013, pp. 2049–2057.

[22] A. Mitra, J. A. Richards, S. Bagchi, and S. Sundaram, “Resilient
distributed state estimation with mobile agents: Overcoming Byzantine
adversaries, communication losses, and intermittent measurements,”
Autonomous Robots, vol. 43, no. 3, pp. 743–768, 2019.

[23] B. Schlotfeldt, V. Tzoumas, D. Thakur, and G. J. Pappas, “Resilient
active information gathering with mobile robots,” in IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 2018, pp.
4309–4316.

[24] V. Tzoumas, A. Jadbabaie, and G. J. Pappas, “Resilient non-
submodular maximization over matroid constraints,” arXiv preprint
arXiv:1804.01013, 2018.

[25] J. B. Orlin, A. S. Schulz, and R. Udwani, “Robust monotone submod-
ular function maximization,” Mathematical Programming, vol. 172,
no. 1-2, pp. 505–537, 2018.

[26] I. Bogunovic, S. Mitrović, J. Scarlett, and V. Cevher, “A distributed
algorithm for partitioned robust submodular maximization,” in IEEE
7th International Workshop on Computational Advances in Multi-
Sensor Adaptive Processing, 2017, pp. 1–5.

[27] V. Tzoumas, K. Gatsis, A. Jadbabaie, and G. J. Pappas, “Resilient

monotone submodular function maximization,” in IEEE Conference
on Decision and Control, 2017, pp. 1362–1367.

[28] R. B. Myerson, Game theory. Harvard university press, 2013.
[29] D. Zuckerman, “Linear degree extractors and the inapproximability of

max clique and chromatic number,” in ACM Symposium on Theory of
Computing, 2006, pp. 681–690.

[30] B. Pattabiraman, M. M. A. Patwary, A. H. Gebremedhin, W.-K. Liao,
and A. Choudhary, “Fast algorithms for the maximum clique problem
on massive sparse graphs,” in International Workshop on Algorithms
and Models for the Web-Graph, 2013, pp. 156–169.

[31] M. Conforti and G. Cornuéjols, “Submodular set functions, matroids
and the greedy algorithm: tight worst-case bounds and some general-
izations of the rado-edmonds theorem,” Discrete applied mathematics,
vol. 7, no. 3, pp. 251–274, 1984.

[32] H. Park and S. Hutchinson, “Robust rendezvous for multi-robot system
with random node failures: an optimization approach,” Autonomous
Robots, pp. 1–12, 2018.

