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Abstract. We study the problem of incorporating risk while making
combinatorial decisions under uncertainty. We formulate a discrete sub-
modular maximization problem for selecting a set using Conditional-
Value-at-Risk (CVaR), a risk metric commonly used in financial analy-
sis. While CVaR has recently been used in optimization of linear cost
functions in robotics, we take the first stages towards extending this to
discrete submodular optimization and provide several positive results.
Specifically, we propose the Sequential Greedy Algorithm that provides
an approximation guarantee on finding the maxima of the CVaR cost
function under a matroidal constraint. The approximation guarantee
shows that the solution produced by our algorithm is within a constant
factor of the optimal and an additive term that depends on the optimal.
Our analysis uses the curvature of the submodular set function, and
proves that the algorithm runs in polynomial time. This formulates a
number of combinatorial optimization problems that appear in robotics.
We use two such problems, vehicle assignment under uncertainty for
mobility-on-demand and sensor selection with failures for environmental
monitoring, as case studies to demonstrate the efficacy of our formula-
tion.

1 Introduction

Combinatorial optimization problems find a variety of applications in robotics.
Typical examples include:

• Sensor placement: Where to place sensors to maximally cover the environ-
ment [1] or reduce the uncertainty in the environment [2]?

• Task allocation: How to allocate tasks to robots to maximize the overall
utility gained by the robots [3]?

• Combinatorial auction: How to choose a combination of items for each player
to maximize the total rewards [4]?

Algorithms for solving such problems find use in sensor placement for environ-
ment monitoring [1,2], robot-target assignment and tracking [5,6,7], and infor-
mative path planning [8]. The underlying optimization problem in most cases
can be written as:

max
S∈I,S∈X

f(S), (1)
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where X denotes a ground set from which a subset of elements S must be cho-
sen. f is a monotone submodular utility function [9,10]. Submodularity is the
property of diminishing returns. Many information theoretic measures, such as
mutual information [2], and geometric measures such as the visible area [11], are
known to be submodular. I denotes a matroidal constraint [9,10]. Matroids are
a powerful combinatorial tool that can represent constraints on the solution set,
e.g., cardinality constraints (“place no more than k sensors”) and connectivity
constraints (“the communication graph of the robots must be connected”) [12].
The objective of this problem is to find a set S satisfying a matroidal constraint
I and maximizing the utility f(S). The general form of this problem is NP-
complete. However, a greedy algorithm yields a constant factor approximation
guarantee [9,10].

In practice, sensors can fail or get compromised [13] or robots may not know
the exact positions of the targets [14]. Hence, the utility f(S) is not necessarily
deterministic but can have uncertainty. Our main contribution is to extend the
traditional formulation given in Eq. 1 to also account for the uncertainty in the
actual cost function. We model the uncertainty by assuming that the utility
function is of the form f(S, y) where S ∈ X is the decision variable and y ∈ Y
represents a random variable which is independent of S. We focus on the case
where f(S, y) is monotone submodular in S ∈ X and integrable in y.

The traditional way of stochastic optimization is to use the expected utility as
the objective function: maxS∈I,S∈XEy[f(S, y)]. Since the sum of the monotone
submodular functions is monotone submodular, Ey[f(S, y)] is still monotone
submodular in S. Thus, the greedy algorithm still retains its constant-factor
performance guarantee [9,10]. Examples of this approach include influence max-
imization [15], moving target detection and tracking [14], and robot assignment
with travel-time uncertainty [16].

Fig. 1. Mobility on demand with travel
time uncertainty of self-driving vehicles.

While optimizing the expected
utility has its uses, it also has its
pitfalls. Consider the example of
mobility-on-demand where two self-
driving vehicles, v1 and v2, are avail-
able to pick up the passengers at a
demand location (Fig. 1). v1 is closer
to the demand location, but it needs
to cross an intersection where it may
need to stop and wait. v2 is further
from the demand location but there
is no intersection along the path. The
travel time for v1 follows a bimodal
distribution (with and without traf-
fic stop) whereas that for v2 follows
a unimodal distribution with a higher
mean but lower uncertainty. Clearly, if
the passenger uses the expected travel
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time as the objective, they would choose v1. However, they will risk waiting a
much longer time, i.e., 17 ∼ 20min about half of the times. A more risk-averse
passenger would choose v2 which has higher expected waiting time 16min but a
lesser risk of waiting longer.

Thus, in these scenarios, it is natural to go beyond expectation and focus on
a risk-averse measure. One popular coherent risk measure is Conditional-Value-
at-Risk (CVaR) [17,18]. CVaR takes a risk level α which is the probability of the
worst α-tail cases. Loosely speaking, maximizing CVaR is equivalent to maxi-
mizing the expectation of the worst α-tail scenarios.1 This risk-averse decision
is rational especially when the failures can lead to unrecoverable consequences,
such as a sensor failure.

Related work. Yang and Chakraborty studied a chance-constrained com-
binatorial optimization problem that takes into account the risk in multi-robot
assignment [19]. They later extended this to knapsack problems [20]. They solved
the problem by transforming it to a risk-averse problem with mean-variance mea-
sure [21]. Chance-constrained optimization is similar to optimizing the Value-
at-Risk (VaR), which is another popular risk measure in finance [22]. However,
Majumdar and Pavone argued that CVaR is a better measure to quantify risk
than VaR or mean-variance based on six proposed axioms in the context of
robotics [23].

Several works have focused on optimizing CVaR. In their seminal work [18],
Rockafellar and Uryasev presented an algorithm for CVaR minimization for re-
ducing the risk in financial portfolio optimization with a large number of in-
struments. Note that, in portfolio optimization, we select a distribution over
available decision variables, instead of selecting a single one. Later, they showed
the advantage of optimizing CVaR for general loss distributions in finance [24].

When the utility is a discrete submodular set function, i.e., f(S, y), Maehara
presented a negative result for maximizing CVaR [25]— there is no polynomial
time multiplicative approximation algorithm for this problem under some reason-
able assumptions in computational complexity. To avoid this difficulty, Ohsaka
and Yoshida in [26] used the same idea from portfolio optimization and proposed
a method of selecting a distribution over available sets rather than selecting a
single set, and gave a provable guarantee. Following this line, Wilder considered
a CVaR maximization of a continuous submodular function instead of the sub-
modular set functions [27]. They gave a (1− 1/e)–approximation algorithm for
continuous submodular functions. They also evaluated the algorithm for discrete
submodular functions using portfolio optimization [26].

Contributions. We focus on the problem of selecting a single set, similar
to [25], to maximize CVaR rather than portfolio optimization [26,27]. This is
because we are motivated by applications where a one-shot decision (placing
sensors and assigning vehicles) must be taken. Our contributions are as follows:

• We propose the Sequential Greedy Algorithm (SGA) which uses the deter-
ministic greedy algorithm [9,10] as a subroutine to find the maximum value
of CVaR (Algorithm 1).

1 We formally review CVaR and other related concepts in Section 2.1
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• We prove that the solution found by SGA is within a constant factor of
the optimal performance along with an additive term which depends on the
optimal value. We also prove that SGA runs in polynomial time (Theorem 1)
and the performance improves as the running time increases.

• We demonstrate the utility of the proposed CVaR maximization problem
through two case studies (Section 3.2). We evaluate the performance of SGA
through simulations (Section 5).

Organization of rest of the paper. We give the necessary background
knowledge for the rest of the paper in Section 2. We formulate the CVaR sub-
modular maximization problem with two case studies in Section 3. We present
SGA along with the analysis of its computational complexity and approximation
ratio in Section 4. We illustrate the performance of SGA to the two case studies
in Section 5. We conclude the paper in Section 6.

2 Background and Preliminaries

Fig. 2. An illustration of risk measures:
VaR and CVaR.

We start by defining the conventions
used in the paper.

Calligraphic font denotes a set
(e.g., A). Given a set A, 2A denotes
its power set. |A| denotes the cardi-
nality of A. Given a set B, A \ B de-
notes the set of elements in A that
are not in B. Pr[·] denotes the prob-
ability of an event and E[·] denotes
the expectation of a random variable.
dxe = min{n ∈ Z|x ≤ n} where Z
denotes the set of integer.

Next, we give the background on
set functions (in the appendix file)
and risk measures.

2.1 Risk measures

Let f(S, y) be a utility function with decision set S and the random variable
y. For each S, the utility f(S, y) is also a random variable with a distribution
induced by that of y. First, we define the Value-at-Risk at risk level α ∈ (0, 1].
Value at Risk:

VaRα(S) = inf{τ ∈ R,Pr[f(S, y) ≤ τ ] ≥ α}. (2)

Thus, VaRα(S) denotes the left endpoint of the α-quantile(s) of the random
variable f(S, y). The Conditional-Value-at-Risk is the expectation of this set of
α-worst cases of f(S, y), defined as:
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Conditional Value at Risk:

CVaRα(S) = E
y
[f(S, y)|f(S, y) ≤ VaRα(S)]. (3)

Fig. 2 shows an illustration of VaRα(S) and CVaRα(S). CVaRα(S) is more
popular than VaRα(S) since it has better properties [18], such as coherence [28].

When optimizing CVaRα(S), we usually resort to an auxiliary function:

H(S, τ) = τ − 1

α
E[(τ − f(S, y))+].

We know that optimizing CVaRα(S) over S is equivalent to optimizing the
auxiliary function H(S, τ) over S and τ [18]. The following lemmas give useful
properties of the auxiliary function H(S, τ).

Lemma 1. If f(S, y) is normalized, monotone increasing and submodular in set
S for any realization of y, the auxiliary function H(S, τ) is monotone increasing
and submodular, but not necessarily normalized in set S for any given τ .

We provide the proofs for all the Lemmas and Theorem in the appendix file.

Lemma 2. The auxiliary function H(S, τ) is concave in τ for any given set S.

Lemma 3. For any given set S, the gradient of the auxiliary function H(S, τ)

with respect to τ fulfills: −( 1
α − 1) ≤ ∂H(S,τ)

∂τ ≤ 1.

3 Problem Formulation and Case Studies

We first formulate the CVaR submodular maximization problem and then present
two applications which we use as case studies.

3.1 Problem Formulation

CVaR Submodular Maximization: We consider the problem of maximizing
CVaRα(S) over a decision set S ⊆ X under a matroid constraint S ∈ I. We know
that maximizing CVaRα(S) over S is equivalent to maximizing the auxiliary
function H(S, τ) over S and τ [18]. Thus, we propose the maximization problem
as:

Problem 1.

max τ − 1

α
E[(τ − f(S, y))+]

s.t. S ∈ I,S ⊆ X , τ ∈ [0, Γ ], (4)

where Γ is the upper bound of the parameter τ . Problem 1 gives a risk-averse
version of maximizing submodular set functions.
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3.2 Case Studies

The risk-averse submodular maximization has many applications, as it has been
written in Section 3.2. We describe two specific applications which we will use
in the simulations.

Fig. 3. Mobility-on-demand with multiple
demands and multiple self-driving vehicles.

Resilient Mobility-on-Demand Con-
sider a mobility-on-demand problem
where we assign R vehicles to N de-
mand locations under arrival-time un-
certainty. An example is shown in
Fig. 3 where seven self-driving vehi-
cles must be assigned to three de-
mand locations to pick up passengers.
We follow the same constraint setting
in [16]— each vehicle can be assigned
to at most one demand but multiple
vehicles can be assigned to the same
demand. Only the vehicle that arrives
first is chosen for picking up the pas-
sengers. Note that the advantage of
the redundant assignment to each de-
mand is that it counters the effect of uncertainty and reduces the waiting time
at demand locations [16]. This may be too conservative for consumer mobility-
on-demand services but can be crucial for urgent and time-critical tasks such as
delivery medical supplies [29].

Assume the arrival time for the robot to arrive at demand location is a
random variable. The distribution can depend on the mean-arrival time. For
example, it is possible to have a shorter path that passes through many inter-
sections, which leads to an uncertainty on arrival time. While a longer road
(possibly a highway) has a lower arrival time uncertainty. Note that for each
demand location, there is a set of robots assigned to it. The vehicle selected at
the demand location is the one that arrives first. Then, this problem becomes a
minimization one since we would like to minimize the arrival time at all demand
locations. We convert it into a maximization one by taking the reciprocal of the
arrival time. Specifically, we use the arrival efficiency which is the reciprocal of
arrival time. Instead of selecting the vehicle at the demand location with min-
imum arrival time, we select the vehicle with maximum arrival efficiency. The
arrival efficiency is also a random variable, and has a distribution depending
on mean-arrival efficiency. Denote the arrival efficiency for robot j ∈ {1, ..., R}
arriving at demand location i ∈ {1, ..., N} as eij . Denote the assignment utility
as the arrival efficiency at all locations, that is,

f(S, y) =
∑
i∈N

maxj∈Sieij (5)



CVaR Submodular Maximization 7

with
⋃N
i=1 Si = S and Si ∩ Sk = ∅, i, k ∈ {1, · · · , N}. Si ∩ Sk = ∅ indicates the

selected set S satisfies a partition matroid constraint, S ∈ I, which represents
that each robot can be assigned to at most one demand. The assignment utility
f(S, y) is monotone submodular in S due to the “max” function. f(S, y) is
normalized since f(∅, y) = 0. Here, we regard the uncertainty as a risk. Our
risk-averse assignment problem is a trade-off between efficiency and uncertainty.
Our goal is to maximize the total efficiencies at the demand locations while
considering the risk from uncertainty.

(a) Part of Virgina Tech campus from
Google Earth.

(b) Top view of part of a campus and
ground sensor’s visibility region.

Fig. 4. Campus monitoring by using a set of sensors with visibility regions.

Robust Environment Monitoring Consider an environment monitoring prob-
lem where we monitor part of a campus with a group of ground sensors (Fig. 4).
Given a set of N candidate positions X , we would like to choose a subset of M
positions S ⊆ X ,M ≤ N , to place visibility-based sensors to maximally cover
the environment. The visibility regions of the ground sensors are obstructed by
the buildings in the environment (Fig. 4-(b)). Consider a scenario where the
probability of failure of a sensor depends on the area it can cover. That is, a
sensor covering a larger area has a larger risk of failure associated with it. This
may be due to the fact that the same number of pixels are used to cover a larger
area and therefore, each pixel covers proportionally a smaller footprint. As a
result, the sensor risks missing out on detecting small objects.

Denote the probability of success and the visibility region for each sensor i, i ∈
{1, ..., N} as pi and vi, respectively. Thus, the polygon each sensor i monitors
is also a random variable. Denote this random polygon as Ai and denote the
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selection utility as the joint coverage area of a set of sensors, S, that is,

f(S, y) = area(
⋃

i=1:M

Ai), i ∈ S,S ⊆ I. (6)

The selection utility f(S, y) is monotone submodular in S due to the overlapping
area. f(S, y) is normalized since f(∅, y) = 0. Here, we regard the sensor failure
as a risk. Our robust environment monitoring problem is a trade-off between
area coverage and sensor failure. Our goal is to maximize the joint-area covered
while considering the risk from sensor failure.

4 Algorithm and Analysis

We present the Sequential Greedy Algorithm (SGA) for solving Problem 1 by
leveraging the useful properties of the auxiliary function H(S, τ). The pseudo-
code is given in Algorithm 1. SGA mainly consists of searching for the appropri-
ate value of τ by solving a subproblem for a fixed τ under a matroid constraint.
Even for a fixed τ , the subproblem of optimizing the auxiliary function is NP-
complete. Nevertheless, we can employ the greedy algorithm for the subproblem,
and sequentially apply it for searching over all τ . We explain each stage in detail
next.

4.1 Sequential Greedy Algorithm

These are four stages in SGA:

a) Initialization (line 1): Algorithm 1 defines a storage set M and initializes
it to be the empty set. Note that, for each specific τ , we can use the greedy
algorithm to obtain a near-optimal solution SG based on the monotonicity and
submodularity of the auxiliary function H(S, τ). M stores all the (SG, τ) pairs
when searching all the possible values of τ .

b) Searching for τ (for loop in lines 2–10): We use a user-defined separation ∆
(line 3) to sequentially search for all possible values of τ within [0, Γ ]. Γ is an
upper bound on τ and can be set by the user based on the specific problem at
hand. We show how to find Γ for the specific cases in Section 5.

c) Greedy algorithm (lines 4–8): For a specific τ , say τi, we use the greedy
approach to choose set SGi . We first initialize set SGi to be the empty set (line 4).
Under a matroid constraint, SGi ∈ I (line 5), we add a new element s which gives
the maximum marginal gain of H(SGi , τi) (line 6) into set SGi (line 7) in each
round.

d) Find the best pair (line 11): Based on the collection of pairs M (line 9), we
pick the pair (SGi , τi) ∈ M that maximizes H(SGi , τi) as the final solution SGi .
We denote this value of τ by τG.
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Algorithm 1: Sequential Greedy Algorithm for Problem 1.

Input: • Ground set X and matroid I
• User-defined risk level α ∈ [0, 1]
• Range of the parameter τ ∈ [0, Γ ] and discretization stage ∆ ∈ (0, Γ ]
• An oracle O that evaluates H(S, τ)

Output: • Selected set SG and corresponding parameter τG

1: M← ∅
2: for i = {0, 1, · · · , d Γ

∆
e} do

3: τi = i∆
4: SGi ← ∅
5: while SGi ∈ I do
6: s = argmax

s∈X\SGi ,S
G
i ∪{s}∈I

H((SGi ∪ {s}), τi)−H(SGi , τi)

7: SGi ← SGi ∪ {s}
8: end while
9: M =M∪ {(SGi , τi)}

10: end for
11: (SG, τG) = argmax

(SGi ,τi)∈M
H(SGi , τi)

Designing an Oracle: Note that an oracle O is used to calculate the value of
H(S, τ). We use a sampling based method to approximate this oracle. Specifi-
cally, we sample ns realizations ỹ(s) from the distribution of y and approximate
H(S, τ) as H(S, τ) ≈ τ − 1

nsα

∑
ỹ[(τ −f(S, ỹ))+]. According to [26, Lemma 4.1],

if the number of samples is ns = O( 1
ε2 log 1

δ ), δ, ε ∈ (0, 1), the CVaR approxima-
tion error is less than ε with the probability at least 1− δ.

4.2 Performance Analysis of SGA

Theorem 1. Let SG and τG be the set and the scalar chosen by the SGA, and
let the S? and τ? be the set and the scalar chosen by the OPT, we have

H(SG, τG) ≥ 1

1 + kf
(H(S?, τ?)−∆)− kf

1 + kf
Γ (

1

α
− 1), (7)

where kf ∈ [0, 1] is the curvature of the H(S, τ) in set S. Please see the de-
tailed definition of the curvature in the appendix. The computational time is
O(d Γ∆e|X |

2ns) where Γ and ∆ are the upper bound on τ and searching separa-
tion parameter, |X | is the cardinality of the ground set X and ns is the number
of the samplings used by the oracle.

SGA gives 1/(1 + kf ) approximation of the optimal with two approximation
errors. One approximation error comes from the searching separation ∆. We can
make this error very small by setting ∆ to be close to zero with the cost of
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increasing the computational time. The second approximation error comes from
the additive term,

Hadd =
kf

1 + kf
Γ (

1

α
− 1), (8)

which depends on the curvature kf and the risk level α. When the risk level α
is very small, this error is very large which means SGA may not give a good
performance guarantee of the optimal. However, if the function H(S, τ) is close
to modular in S (kf → 0), this error is close to zero. Notably, when kf → 0 and
∆→ 0, SGA gives a near-optimal solution (H(SG, τG)→ H(S?, τ?)).

Next, we prove Theorem 1. We start with the proof of approximation ratio,
then go to the analysis of the computational time. We first present the necessary
lemmas for the proof of the approximation ratio.

Lemma 4. Let S?i be the optimal set for a specific τi that maximizes H(S, τ =
τi). By sequentially searching for τ ∈ [0, Γ ] with a separation ∆, we have

max
i∈{0,1,··· ,d Γ∆ e}

H(S?i , τi) ≥ H(S?, τ?)−∆. (9)

Next, we build the relationship between the set selected by the greedy ap-
proach, SGi , and the optimal set S?i for τi.

Lemma 5. Let S?i and SGi be the sets selected by the greedy algorithm and the
optimal approach for a fixed τi that maximizes H(S, τ = τi). We have

H(SGi , τi) ≥
1

1 + kf
H(S?i , τi)−

kf
1 + kf

Γ (
1

α
− 1). (10)

where kf is the curvature of the function H(S, τ) in S with a matroid constraint
I. Γ is the upper bound of parameter τ .

We leverage Lemma 4 and Lemma 5 to prove the approximation ratio in
Theorem 1.

5 Simulations

We perform numerical simulations to verify the performance of SGA in resilient
mobility-on-demand and robust environment monitoring. Our code is available
online.2

2 https://github.com/raaslab/risk averse submodular selection.git

https://github.com/raaslab/risk_averse_submodular_selection.git


CVaR Submodular Maximization 11

5.1 Resilient Mobility-on-Demand under Arrival Time Uncertainty

We consider assigning R = 6 supply vehicles to N = 4 demand locations in a
2D environment. The positions of the demand locations and the supply vehicles
are randomly generated within a square environment of 10 units side length.
Denote the Euclidean distance between demand location i ∈ {1, ..., N} and ve-
hicle position j ∈ {1, ..., R} as dij . Based on the distribution discussion of the
arrival efficiency distribution in Section 3.2, we assume each arrival efficiency eij
has a uniform distribution with its mean proportional to the reciprocal of the
distance between demand i and vehicle j. Furthermore, the uncertainty is higher
if the mean efficiency is higher. Note that, the algorithm can handle other, more
complex, distributions for arrival times. We use a uniform distribution for ease
of exposition. Specifically, denote the mean of eij as ēij and set ēij = 10/dij . We
model the arrival efficiency distribution to be a uniform distribution as follows:

eij = [ēij − ē2.5ij /max{ēij}, ēij + ē2.5ij /max{ēij}],

where max{ēij} = maxi,jeij , i ∈ {1, ..., N}, j ∈ {1, ..., R}.
From the assignment utility function (Eq. 5), for any realization of y, say ỹ,

f(S, ỹ) :=
∑
i∈N

maxj∈Si ẽij

where ẽij indicates one realization of eij . If all vehicle-demand pairs are inde-
pendent from each other, y models a multi-independent uniform distribution.
We sample ns times from underlying multi-independent uniform distribution of
y and approximate the auxiliary function H(S, τ) as

H(S, τ) ≈ τ − 1

nsα

∑
ỹ

[(τ −
∑
i∈N

maxj∈Si ẽij)+].

We set the upper bound of the parameter τ as Γ = Nmax(ẽij), i = {1, ...N}, j =
{1, ..., R}, to make sure Γ − f(S, y) ≥ 0. We set the searching separation for τ
as ∆ = 1.

After receiving the pair (SG, τG) from SGA, we plot the value of H(SG, τG)
and H(SG, τ) with respect to different risk levels α in Fig. 5. Fig. 5-(a) shows
that H(SG, τG) increases when α increases. This suggests that SGA correctly
maximizes H(S, τ). Fig. 5-(b) shows that H(SG, τ) is concave or piecewise con-
cave, which is consistent with the property of H(S, τ).

We plot the distribution of assignment utility,

f(SG, y) =
∑
i∈N

maxj∈SGi eij

in Fig. 6 by sampling ns = 1000 times from the underlying distribution of y.
SGi is a set of vehicles assigned to demand i by SGA. SG = ∪Ni=1SGi . When
the risk level α is small, vehicle-demand pairs with low efficiencies (equivalently,
low uncertainties) are selected. This is because small risk level indicates the
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Fig. 5. The value of H(S, τ) by SGA with respect to different risk confidence levels.

assignment is conservative and only willing to take a little risk. Thus, lower
efficiency with lower uncertainty is assigned to avoid the risk induced by the
uncertainty. In contrast, when α is large, the assignment is allowed to take more
risk to gain more assignment utility. Vehicle-demand pairs with high efficiencies
(equivalently, high uncertainties) are selected in such a case. Note that, when
the risk level is close to zero, SGA may not give a correct solution because of a
large approximation error (Fig. 7). However, this error decreases quickly to zero
when the risk level increases.

We also compare SGA with CVaR measure with the greedy algorithm with
the expectation, i.e., risk-neutral measure [16] in Fig. 8. Note that risk-neutral
measure is a special case of CVaRα(S) measure when α = 1. We give an illus-
trative example of the assignment by SGA for two extreme risk levels, α = 0.1
and α = 1. When α is small (α = 0.1), the assignment is conservative and
thus further vehicles (with lower efficiency and lower uncertainty) are assigned
to each demand (Fig. 8-(a)). In contrast, when α = 1, nearby vehicles (with
higher efficiency and higher uncertainty) are selected for the demands (Fig. 8-
(b)). Even though the mean value of the assignment utility distribution is larger
at α = 1 than α = 0.1, it is exposed to the risk of receiving lower utility since
the mean-std bar at α = 1 has smaller left endpoint than the mean-std bar at
α = 0.1 (Fig. 8-(c)).

5.2 Robust Environment Monitoring

We consider selecting M = 4 locations from N = 8 candidate locations to place
sensors in the environment (Fig. 4). Denote the area of the free space as vfree.
The positions of N candidate locations are randomly generated within the free
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Fig. 7. Additive term in the approxima-
tion ratio with respect to risk level α.

space vfree. We calculate the visibility region for each sensor vi by using the
VisiLibity library [30]. Based on the sensor model discussed in Section 3.2, we
set the probability of success for each sensor i as

pi = 1− vi/vfree,

and model the working of each sensor as a Bernoulli distribution with pi prob-
ability of success and 1 − pi probability of failure. Thus the random polygon
monitored by each sensor Ai, follows the distribution{

Pr[Ai = vi] = pi,

Pr[Ai = 0] = 1− pi.
(11)

From the assignment utility function (Eq. 6), for any realization of y, say ỹ,

f(S, y) = area(
⋃

i=1:M

Ãi),

where Ãi indicates one realization of Ai by sampling y. If all sensors are in-
dependent of each other, we can model the working of a set of sensors as a
multi-independent Bernoulli distribution. We sample ns = 1000 times from the
underlying multi-independent Bernoulli distribution of y and approximate the
auxiliary function H(S, τ) as

H(S, τ) ≈ τ − 1

nsα

∑
ỹ

[(τ −
⋃

i=1:M

Ãi)+],

where Ãi is one realization of Ai by sampling y. We set the upper bound for the
parameter τ as the area of all the free space vfree and set the searching separation
for τ as ∆ = 1.
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Fig. 8. Assignments and utility distributions by SGA with two extreme risk level values.
The red solid star represents the demand location. The black solid square represents the
vehicle position. The line between the vehicle and the demand represents an assignment.
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Fig. 9. The value of H(S, τ) by SGA with respect to different risk confidence levels.

We use SGA to find the pair (SG, τG) with respect to several risk levels α.
We plot the value of H(SG, τG) for several risk levels in Fig. 9-(a). A larger
risk level gives a larger H(SG, τG), which means the pair (SG, τG) found by
SGA correctly maximizes H(S, τ) with respect to the risk level α. Moreover,
we plot functions H(SG, τ) for several risk levels α in Fig. 9-(b). Note that SG
is computed by SGA at each τ . For each α, H(SG, τ) shows the concavity or
piecewise concavity of function H(S, τ).
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Fig. 10. Distribution of the selection util-
ity f(SG, y) by SGA.
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Fig. 11. Additive term in the approxima-
tion ratio with respect to risk level α.

Based on the SG calculated by SGA, we sample ns = 1000 times from the
underlying distribution of y and plot the distribution of the selection utility,

f(SG, y) =
⋃

i=1:M

Ai, i ∈ SG

in Fig. 10. Note that, when the risk level α is small, the sensors with smaller
visibility region and a higher probability of success should be selected. Lower
risk level suggests a conservative selection. Sensors with a higher probability of
success are selected to avoid the risk induced by sensor failure. In contrast, when
α is large, the selection would like to take more risk to gain more monitoring
utility. The sensors with larger visibility region and a lower probability of success
should be selected. Fig. 10 demonstrates this behavior except between α = 0.001
to α = 0.01. This is because when α is very small, the approximation error (Eq. 8)
is very large as shown in Fig. 11, and thus SGA may not give a good solution.

We also compare SGA by using CVaR measure with the greedy algorithm by
using the expectation, i.e., risk-neutral measure (mentioned in [2, Section 6.1])
in Fig. 12. In fact, the risk-neutral measure is equivalent to case of CVaRα(S)
when α = 1. We give an illustrative example of the sensor selection by SGA for
two extreme risk levels, α = 0.1 and α = 1. When risk level α is small (α = 0.1),
the selection is conservative and thus the sensors with small visibility region
are selected (Fig. 12 -(a)). In contrast, when α = 1, the risk is neutral and the
selection is more adventurous, and thus sensors with large visibility region are
selected (Fig. 12 -(b)). The mean-std bars of the selection utility distributions in
Fig. 12 -(c) show that the selection utility at the expectation (α = 1) has larger
mean value than the selection at α = 0.1. However, the selection at α = 1 has
the risk of gaining lower utility since the left endpoint of mean-std bar at α = 1
is smaller than the left endpoint of mean-std bar at α = 0.1.
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(a) Selection when α =
0.1.

(b) Selection when α = 1
(Risk-neutral).
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Fig. 12. Sensor selection and utility distributions by SGA with two extreme risk level
values. The red solid circle represents the sensor selected by SGA.

6 Conclusion and Discussion

We studied a risk-averse discrete submodular maximization problem. We provide
the first positive results for discrete CVaR submodular maximization for select-
ing a set under matroidal constraints. In particular, we proposed the Sequential
Greedy Algorithm and analyzed its approximation ratio and the running time.
We demonstrated the two practical use-cases of the CVaR submodular maxi-
mization problem.

Notably, our Sequential Greedy Algorithm works for any matroid constraint.
In particular, the multiplicative approximation ratio can be improved to 1/kf (1−
e−kf ) if we know that the constraint is a uniform matroid [31, Theorem 5.4].

The additive term in our analysis depends on α. This term can be large when
the risk level α is very small. Our ongoing work is to remove this dependence
on α, perhaps by designing another algorithm specifically for low risk levels. We
note that if we use an optimal algorithm instead of the greedy algorithm as a
subroutine, then the additive term disappears from the approximation guarantee.
The algorithm also requires knowing Γ . We showed how to find Γ (or an upper
bound for it) for the two case studies considered in this paper. Devising a general
strategy for finding Γ is part of our ongoing work.

Our second line of ongoing work focuses on applying the risk-averse strategy
to multi-vehicle routing, patrolling, and informative path planning in dangerous
environments [32] and mobility on demand with real-world data sets (2014 NYC
Taxicab Factbook).3
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8 Appendix

Background on set functions:

8.1 Monotonicity, Submodularity, Matroid and Curvature

We begin by reviewing useful properties of a set function f(S) defined for a finite
ground set X and matroid constraints.

Monotonicity [9]: A set function f : 2X 7→ R is monotone (non-decreasing) if
and only if for any sets S ⊆ S ′ ⊆ X , we have f(S) ≤ f(S ′).

Normalized Function [10]: A set function f : 2X 7→ R is called normalized if
and only if f(∅) = 0.

Submodularity [9, Proposition 2.1]: A set function f : 2X 7→ R is submod-
ular if and only if for any sets S ⊆ S ′ ⊆ X , and any element s ∈ X and s /∈ S ′,
we have: f(S ∪ {s})− f(S) ≥ f(S ′ ∪ {s})− f(S ′). Therefore the marginal gain
f(S ∪ {s})− f(S) is non-increasing.

Matroid [33, Section 39.1]— Denote a non-empty collection of subsets of X
as I. The pair (X , I) is called a matroid if and only if the following conditions
are satisfied:

• for any set S ⊆ X it must hold that S ∈ I, and for any set P ⊆ S it must
hold that P ∈ I.

• for any sets S,P ⊆ X and |P| ≤ |S|, it must hold that there exists an
element s ∈ S\P such that P ∪ {s} ∈ I.

We will use two specific forms of matroids that are reviewed next.

Uniform Matroid: A uniform matroid is a matroid (X , I) such that for a
positive integer κ, {S : S ⊆ X , |S| ≤ κ}. Thus, the uniform matroid only
constrains the cardinality of the feasible sets in I.

Partition Matroid: A partition matroid is a matroid (X , I) such that for a
positive integer n, disjoint sets X1, ...,Xn and positive integers κ1, ..., κn, X ≡
X1 ∪ · · · Xn and I = {S : S ⊆ X , |S ∩ Xi| ≤ κi for all i = 1, ..., n}.

Curvature [31]: consider a matroid I for X , and a non-decreasing submodular
set function f : 2X 7→ R such that (without loss of generality) for any element
s ∈ X , f(s) 6= 0. The curvature measures how far f is from submodularity or
linearity. Define curvature of f over the matroid I as:

kf , 1− min
s∈S,S∈I

f(S)− f(S \ {s})
f(s)

. (12)

Note that the definition of curvature kf (Equation 12) implies that 0 ≤ kf ≤ 1.
Specifically, if kf = 0, it means for all the feasible sets S ∈ X , f(S) =

∑
s∈S f(s).
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In this case, f is a modular function. In contrast, if kf = 1, then there exist a
feasible S ∈ I and an element s ∈ X such that f(S) = f(S \ {s}). In this case,
the element s is redundant for the contribution of the value of f given the set
S \ {s}.

8.2 Greedy Approximation Algorithm

In order to maximize a set function f , the greedy algorithm selects each element
s of S based on the maximum marginal gain at each round.

We consider maximizing a normalized monotone submodular set function f .
For any matroid, the greedy algorithm gives a 1/2 approximation [10]. In par-
ticular, the greedy algorithm can give a (1− 1/e)–approximation of the optimal
solution under the uniform matroid [9]. If we know the curvature of the set
function f , we have a 1/(1 + kf ) approximation for any matroid constraint [31,
Theorem 2.3]. That is,

f(SG)

f?
≥ 1

1 + kf
.

where SG ∈ I is the set selected by the greedy algorithm, I is the uniform
matroid and f? is the function value with optimal solution. Note that, if kf = 0,
which means f is modular, then the greedy algorithm reaches the optimal. If
kf = 1, then we have the 1/2–approximation.

Proof of Lemma 1:

Proof. H(S, τ) = τ − 1
αE[max(τ − f(S, y), 0)]. Since f(S, y) is monotone in-

creasing and submodular in S, max{τ − f(S, y), 0} is monotone decreasing and
supermodular in S, and its expectation is also monotone decreasing and super-
modular in S. Then H(S, τ) is monotone increasing and submodular in S.

H(∅, τ) = τ(1− 1
α ) given f(S, y) is normalized (f(∅, y) = 0). Thus, H(S, τ)

is not necessarily normalized since τ is not necessarily zero. See a similar proof
in [18,25].

ut
Proof of Lemma 2:

Proof. H(S, τ) = τ− 1
αE[max(τ−f(S, y), 0)]. Since max(τ−f(S, y), 0) is convex

in τ , its expectation is also convex in τ . Then − 1
αE[max(τ−f(S, y), 0)] is concave

in τ and H(S, τ) is concave in τ .
ut

Proof of Lemma 3:

Proof. By using the result in [18, Lemma 1 and Proof of Theorem 1], we know
that H(S, τ) is concave and continuously differentiable with derivative given by

∂H(S, τ)

∂τ
= 1− 1

α
(1− Φ(f(S, y)))

where Φ(f(S, y)) is the cumulative distribution function of f(S, y). Thus, 0 ≤
Φ(f(S, y))) ≤ 1, which proves the lemma.
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(a) H(S, τ) is under the red dotted line. (b) H(S, τ) is under the red dotted line
and green dotted line.

Fig. 13. Illustration of H(S, τ) within τ ∈ [τi, τi+1].

ut
Proof of Lemma 4:

Proof. Denote H?
i = max H(S, τ) with τ ∈ [i∆, (i+ 1)∆),S ∈ I. From Lem-

mas 2 and 3, we know H(S, τ) is concave in τ and ∂H(S,τ)
∂τ < 1. The properties

of concavity and bound on the gradient give

H∗i −H(S?i , τi) ≤ ∆.

We illustrate this claim by using Figure 13-(a). Since S?i is the optimal set
at τi for maximizing H(S, τ), the value of H(S, τ) with any other set S ∈ I
at τi is at most H(S?i , τi). That is, H(S, τi) ≤ H(S?i , τi). Since H(S, τ) is a
concave function of τ for any specific S, H(S, τ) can be a single concave function,
i.e., H(Sm, τ) or H(Sn, τ) or a piecewise concave function by a combination of
several concave functions, i.e., a combination of H(Sm, τ) and H(Sn, τ) during
τ ∈ [τi, τi+1] (Figure 13-(a)). In either case, H(S, τ) is below the line starting at
H(S?i , τi) with slope = 1 during τ ∈ [τi, τi+1] (the red dotted line in Figure 13-

(a)). Since H(S, τi) ≤ H(S?i , τi) and H(S, τ) has a bounded gradient ∂H(S,τ)
∂τ ≤

1. Thus, H?
i −H(S?i , τi) ≤

∂H(S,τ)
∂τ ∆ = ∆, ∀i ∈ {0, 1, · · · , d Γ∆e}.

Then we have H?
i − maxiH(S?i , τi) ≤ ∆, ∀i ∈ {0, 1, · · · , d Γ∆e}. Note that

H?
i is the maximum value of H(S, τ) at each interval τ ∈ [i∆, (i + 1)∆). The

maximum value of H(S, τ), H(S?, τ?) is equal to one of H?
i , i ∈ {0, 1, · · · , d Γ∆e}.

Thus, we reach the claim in Lemma 4.

ut
Proof of Lemma 5:



20 L. Zhou & P. Tokekar

Proof. We use a the previous result [31, Theorem 2.3 ] for the proof of this claim.
We know that for any given τ ,H(S, τ) is a non-normalized monotone submdoular
function in S (Lemma 1). For maximizing normalized monotone submodular set
functions, the greedy approach can give a 1+1/kf approximation of the optimal
performance with any matroid constraint [31, Theorem 2.3 ]. After normalizing
H(S, τ) by H(S, τ)−H(∅, τ), we have

H(SGi , τi)−H(∅, τi)
H(S?i , τi)−H(∅, τi)

≥ 1

1 + kf
, (13)

with any matroid constraint. Given 0 ≤ kf ≤ 1 and H(∅, τ) = −τ( 1
α − 1), we

transform Equation 13 into,

H(SGi , τi) ≥
1

1 + kf
H(S?i , τi)−

kf
1 + kf

τi(
1

α
− 1)

≥ 1

1 + kf
H(S?i , τi)−

kf
1 + kf

Γ (
1

α
− 1) (14)

where Equation 14 holds since Γ is the upper bound of τ . Thus, we prove the
Lemma 5.

ut
Proof of Theorem 1:

Proof. From Equation 10 in Lemma 5, we have H(S?i , τi) is bounded by

H(S?i , τi) ≤ (1 + kf )H(SGi , τi) + kfΓ (
1

α
− 1). (15)

Denote this upper bound as

Hb(SGi , τi) := (1 + kf )H(SGi , τi) + kfΓ (
1

α
− 1).

We know H(S, τ) is below the line starting at H(S?i , τi) with slope = 1 during
τ ∈ [τi, τi+1] (the red dotted line in Figure 13-(a)/(b)) (Lemma 4). H(S, τ) must
be also below the line starting at Hb(SGi , τi) with slope = 1 during τ ∈ [τi, τi+1]
(the green dotted line in Figure 13-(b)). Similar to the proof in Lemma 4, we
have H?

i −Hb(SGi , τi) ≤ ∆ and

maxi∈{0,1,··· ,d Γ∆ e}
Hb(SGi , τi) ≥ H(S?, τ?)−∆. (16)

SGA selects the pair (SG, τG) as the pair (SGi , τi) with maxi H(SGi , τi). Then
by Inequalities 15 and 16, we have

(1 + kf )H(SG, τG) + kfΓ (
1

α
− 1) ≥ H(S?, τ?)−∆. (17)

By rearranging the terms, we get the approximation ratio in Theorem 1.
Next, we give the proof of the computational time of SGA in Theorem 1. We

verify the computational time of SGA by following the stages of the pseudo code
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in SGA. First, from line 2 to 10, we use a “for” loop for searching τ which takes
d Γ∆e evaluations. Second, within the “For” loop, we use the greedy algorithm to
solve the subproblem (lines 4–8). In order to select a subset S with size |S| from
a ground set X with size |X |, the greedy algorithm takes |S| rounds (line 5),
and calculates the marginal gain of the remaining elements in X at each round

(line 6). Thus, the greedy algorithm takes
∑|S|
i=1 |X | − i evaluations. Thus, the

greedy algorithm takes |S|(
∑|S|
i=1 |X | − i) evaluations. Third, by calculating the

marginal gain for each element, the oracle O samples ns times for computing
H(S). Thus, overall, the “for” loop containing the greedy algorithm with the

oracle sampling takes d Γ∆e|S|(
∑|S|
i=1 |X |− i)ns evaluations. Last, finding the best

pair from storage set M (line 11 of Alg. 1) takes O(d Γ∆e) time. Therefore, the
computational complexity for SGA is,

dΓ
∆
e|S|(

|S|∑
i=1

|X | − i)ns +O(dΓ
∆
e) = O(dΓ

∆
e|X |2ns),

given |S| ≤ |X |.
ut
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