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Abstract—In this paper, we study two sensor assignment prob-
lems for multitarget tracking with the goal of improving the ob-
servability of the underlying estimator. We consider various mea-
sures of the observability matrix as the assignment value function.
We first study the general version where the sensors must form
teams to track individual targets. If the value function is monoton-
ically increasing and submodular, then a greedy algorithm yields
a 1/2–approximation. We then study a restricted version where
exactly two sensors must be assigned to each target. We present a
1/3–approximation algorithm for this problem, which holds for
arbitrary value functions (not necessarily submodular or mono-
tone). In addition to approximation algorithms, we also present
various properties of observability measures. We show that the in-
verse of the condition number of the observability matrix is nei-
ther monotone nor submodular, but present other measures that
are. Specifically, we show that the trace and rank of the symmetric
observability matrix are monotone and submodular and the log de-
terminant of the symmetric observability matrix is monotone and
submodular when the matrix is nonsingular. If the target’s motion
model is not known, the inverse cannot be computed exactly. In-
stead, we present a lower bound for distance sensors. In addition
to theoretical results, we evaluate our results empirically through
simulations.

Index Terms—Approximation assignment algorithms, nonlinear
observability measures, planning, scheduling and coordination,
sensor-based control.

I. INTRODUCTION

A SSIGNING sensors to better track targets is a well-studied
problem [1]–[13]. The typical setup is to formulate a one-

to-one assignment problem, which can be solved using bipartite
graph matching algorithms [14]. Unlike these works, we focus
on scenarios where multiple sensors can be assigned to each
target. Furthermore, the utility of assigning multiple sensors may
not even be a simple addition of individual utilities, and can have
diminishing returns. We study two versions of these many-to-one
assignment problems and give constant-factor approximation
algorithms for each.
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We study these assignment problems in settings where as-
signing the right set of sensors can improve the observability
in tracking potentially mobile targets using noisy sensors. The
performance of the target state estimators can be improved by
exploiting the observability of the underlying system [15]–[18].
Our formulation is motivated by the need for reducing the load
assigned to individual sensors in cooperative tracking scenar-
ios where sensing multiple targets by the same sensor can be
time-consuming or even infeasible. Following applications are
reflective of such scenarios. Tokekar et al. [19] presented a sys-
tem to track radio-tagged fish in which each radio tag is assigned
a unique frequency. In order to get a measurement for one fre-
quency, the sensor spends two seconds listening to the periodic
emissions. Therefore, tracking multiple targets by the same sen-
sor can be time-consuming. Instead, assigning each robot to a
dedicated target frequency can allow for better tracking. A simi-
lar setup has been used in a number of studies on target tracking
with radio sensors [20]–[22]. Such constraints are also applica-
ble for sensors with limited fields of view [23] or with compar-
atively lower processing capability [24], [25], which can make
it difficult to identify and/or track multiple targets for the same
sensor. Motivated by these scenarios, we seek to assign sensors
to track targets with the constraint that each sensor is assigned
at most one target. However, multiple sensors can be assigned
to track the same target. In fact, more sensors can often improve
the tracking performance.

We first study a general assignment problem where there is no
restriction on the number of sensors assigned to a target. We let
the algorithm decide the optimal configuration of sensor teams
assigned to each target. If the value function is submodular and
monotone,1 a greedy algorithm gives a 1/2–approximation [26].
In general, this bound is tighter, i.e., 1− 1/e by using the
randomized continuous greedy algorithm [27]. However, for a
deterministic algorithm, 1/2–approximation is the best-known
result [27]. We show that observability measures such as the
trace and rank of the symmetric observability matrix are sub-
modular and monotone and the log determinant is submodu-
lar and monotone when the symmetric observability matrix is
nonsingular. However, the inverse of the condition number, a
commonly used measure, is neither monotone nor submodular,
which we show by a counterexample.

We then study a restricted version of the problem where the
value function can be arbitrary (not necessarily monotone and
submodular) but exactly two sensors must be assigned to a tar-
get. In fact, we show in Corollaries 1 and 2 that at least two

1We use “monotone” and “monotone increasing” interchangeably.
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range sensors must be assigned for the inverse condition num-
ber to be greater than zero. Even for the case of bearing sensors,
it is known that two sensors are necessary; there exists work
on assignment and placement of pairs of bearing sensors for im-
proving target tracking [5], [7]. We study the analogous problem
for range sensors. We prove that the greedy algorithm achieves
a 1/3–approximation of the optimal solution for assigning pairs
of range sensors.

Observability is a basic concept in control theory and has been
widely applied in robotics. Observability for range-only beacon
sensors, in particular, has been closely studied for underwater
navigation. Gadre and Stilwell [15] analyzed the local and global
observability [28] for the localization of an autonomous under-
water vehicle by an acoustic beacon. The problems of single
vehicle localization and multivehicle relative localization are
studied in [17] using an observability criterion introduced in
[29]. In these works, it is the sensors that are moving. Con-
sequently, the sensors know their control vectors and can thus
compute the observability matrix and its measures. When track-
ing a target, however, the control inputs for the targets may be
unknown. In recent work, Williams and Sukhatme [18] studied a
multisensor localization and target tracking problem where they
showed how to leverage graph rigidity to improve the observ-
ability for sensor team localization and robust target tracking.

Unlike these works, we consider scenarios where the control
inputs for the targets are not known to the sensors. Consequently,
we cannot compute the observability matrix exactly. Instead, we
present a novel lower bound on the observability for the case of
unknown target motion tracked by range-only sensors. Specifi-
cally, we show how to lower bound the condition number [29] of
the partially known observability matrix using only the known
part (see Section III). The result is specific to the problem at
hand where the inputs appear, linearly, on a single line of the
observability matrix.

In addition to theoretical results, we conduct simulations to
evaluate the empirical performance of the algorithms. We find
that sensors are assigned to targets almost uniformly using the
greedy algorithm for the first problem (see Section V-A). The
greedy algorithm for the second problem performs much better
than 1/3 in practice (see Section V-B).

II. OVERVIEW OF THE PROBLEM AND RESULTS

In this section, we first formally define the problems that are
studied and then summarize the main contributions of this paper.

A. Problem Formulation

We consider a scenario where there are N sensors and L tar-
gets in the environment. We use σ(tl) to represent the set of
sensors assigned to target tl. σ−1(si) gives the set of targets as-
signed to sensor si. We use σi(tl) to give the ith sensor assigned
to target tl. We order the assigned sensors by using their IDs
such that σ1(tl) < σ2(tl) < σ3(tl) < · · · . Let ω(si, sj , tl) and
ω(Si, tl) be some measure of the observability of tracking tl
with si and sj , and with a set of sensors Si, respectively. We

calculate the observability measure by taking account of the rel-
ative positions of sensors and targets (which will appear in the
observability matrix) at every time step.

We start with the problem of assigning a set of sensors to
each target. The sensors form teams of varying sizes to track in-
dividual targets. Sensors within a team can share measurements
so as to better track the targets. We constrain each sensor to
be assigned to only one target. This is motivated by scenarios
where sensing multiple targets can be time-consuming (as is the
case with radio sensors [19], [30]) or communicating multiple
measurements with the team can be energy and time-consuming.

Problem 1 (General Assignment): Given a set of sensors,
S := {s0, . . . , sN}, and a set of targets, T := {t0, . . . , tL}, find
an assignment of sets of sensors targets to

maximize
L∑

l=1

ω(σ(tl), tl) (1)

with the added constraint that each sensor is assigned to at most
one target.

Problem 1 is the general assignment problem, which is diffi-
cult to solve for arbitrary ω(·). In order to solve the assignment
problem for arbitrary value functions, we consider a restricted
case where each target is tracked by exactly two sensors.

Problem 2 (Nonoverlapping Pair Assignment): Given a set
of sensors, S := {s0, . . . , sN}, and a set of targets, T :=
{t0, . . . , tL}, find an assignment of nonoverlapping pairs of
sensors targets to

maximize
L∑

l=1

ω(σ1(tl), σ2(tl), tl) (2)

with the added constraint each sensor is assigned to at most
one target. That is, for all i = 1, . . . , N we have |σ−1(si)| ≤ 1,
assuming N ≥ 2L.

In fact, we show in Corollaries 1 and 2 that at least two sensors
are necessary for certain observability measure of range sensors.
Even for the case of bearing sensors, it is known that two sensors
are necessary; there exists work on assignment and placement
of pairs of bearing sensors for improving target tracking [5], [7].

B. Contributions

The main contributions of this paper are summarized as
follows.

1) We derive a lower bound on the inverse of the condition
number of the observability matrix, which is useful when
the control input for the target is not known.

2) We show that the condition number of the observability
matrix is neither submodular nor monotone increasing. We
show that the trace and the rank of the symmetric observ-
ability matrix are submodular and monotone increasing.
We also show the log determinant of the symmetric ob-
servability matrix is submodular and monotone when the
symmetric observability matrix is nonsingular.

3) We present a greedy assignment algorithm that
yields a 1/2–approximation for Problem 1 and 1/3–
approximation for Problem 2.
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4) We verify the performance of our proposed greedy al-
gorithm with various observability measures (that not
necessary submodular) through extensive simulations.

We start by showing how to bound the inverse of condi-
tion number (see Section III) and then present the assignment
algorithms (see Section IV).

III. BOUNDING THE OBSERVABILITY

Consider a mobile target tl whose position is denoted by ptl .
Suppose there are N stationary sensors that can measure the
distance2 to the target. We have

{
ṗtl = utl

zsi = hi(ptl) =
1
2‖psi − ptl‖22+vsi , i = 1, . . . , N

(3)

where ptl := [xtl , ytl ]
T gives the two-dimensional (2-D) posi-

tion of the target, and utl := [ulx, uly] defines its control input,
which is unknown to the sensor. Let utl,max � max ‖utl‖2 and
let zsi denote the range-only measurement from each sensor
si whose position is given by psi = [xsi , ysi ]

T . Further, let vsi
denote the zero mean Gaussian noise of sensor si, which is in-
dependent of the states psi and ptl . The state-independent noise
model is used in many observability-based studies [16]–[18],
[31], [32]. For simplicity, we also assume that the target does
not collide with any sensor, i.e., ‖psi − ptl‖2 �= 0 and no two
sensors are deployed at the same position.

We analyze the weak local observability matrix, O(ptl , utl),
of this multisensor-target tracking system. We show how to
lower bound the inverse of the condition number of O(ptl , utl),
given by C−1(O(ptl , utl)), independent of utl . We also show
that the lower bound, C−1(O(ptl , utl)), is tight.

We compute the local nonlinear observability matrix by using
Lie derivatives [18], [28] for this system [see (3)] as

O(ptl , utl) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇Lh1
0

∇Lh1
1

...

∇Lh2
0

∇Lh2
1

...

...

∇LhN
0

∇LhN
1

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xtl − xs1 , ytl − ys1
ulx, uly

0, 0

...

xtl − xs2 , ytl − ys2
ulx, uly

0, 0

...

...

xtl − xsN , ytl − ysN
ulx, uly

0, 0

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

2We use the square of the distance/range for mathematical convenience.

This equation can be rewritten as

O(ptl , utl) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

xtl − xs1 , ytl − ys1
xtl − xs2 , ytl − ys2

...

xtl − xsN , ytl − ysN
ulx, uly

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×2

. (5)

The state of the target tl is weakly locally observable if the local
nonlinear observability matrix has full column rank [28]. How-
ever, the rank test for the observability of the system does not
tell the degree of the observability or how good the observability
is. The condition number [29], defined as the ratio of the largest
singular value to the smallest, can be used to measure this de-
gree of unobservability. We use the inverse of condition number
given as

C−1(O(ptl , utl)) =
σmin(O(ptl , utl))

σmax(O(ptl , utl))
. (6)

Note that C−1 ∈ [0, 1]. C−1 = 0 means O(ptl , utl) is singular
and C−1 = 1 means O(ptl , utl) is well-conditioned. A larger
C−1 means better observability (see more details in [17]).

In the local nonlinear observability matrix O(ptl , utl), utl

is unknown and not controllable by the sensor. On the other
hand, ptl − psi depends on the relative state between each sen-
sor si and target tl and is known to the sensor (assuming
an estimate of the target’s position is known). Thus, we first
partition O(ptl , utl) into the known and unknown parts as

O(ptl , utl) =

[
O(ptl)

O(utl)

]
(7)

where

O(ptl) :=

⎡

⎢⎢⎢⎢⎣

xtl − xs1 , ytl − ys1
xtl − xs2 , ytl − ys2

...

xtl − xsN , ytl − ysN

⎤

⎥⎥⎥⎥⎦
(8)

and

O(utl) :=
[
ulx, uly

]
(9)

indicate the contributions from the sensor-target relative state
and target’s control input, respectively. Since O(utl) is un-
known, we cannot compute C−1(O(ptl , utl)) exactly. Instead,
we compute its lower bound as shown in the following.

Theorem 1: For the multisensor-target system [see (3)] with
the number of sensors, N ≥ 2, the inverse of the condition
number is lower bounded by

σmin(O(ptl))√
σ2
max(O(ptl)) + u2

tl,max

.

We present the full proof for this and other results in the
appendix.

We wish to improve the worst case, i.e., the lower bound of
C−1(O(ptl , utl)), by optimizing the sensor-target relative state
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by assigning a different subset of sensors to the target. In the
following, we will show that at least two sensors are required to
improve the lower bound.

Corollary 1: The lower bound of the observability metric in
one-sensor-target system,C−1(Oi(ptl , utl)), is identically zero.
It does not depend on the position of the sensor and therefore
cannot be controlled by the sensors.

When the number of sensors N ≥ 2, we have a positive result
that shows that the sensors can improve the lower bound on the
inverse of the condition number of optimizing their positions,
even though the contribution to the observability matrix from
the target’s input, O(utl), is unknown and cannot be controlled.

Corollary 2: Suppose that the number of sensors assigned
to tl, N ≥ 2. If the sensors increase C−1(O(ptl)) and
σmin(O(ptl)) [the inverse of condition number and the smallest
singular number of the relative state contribution O(ptl)], then
the lower bound of C−1(O(ptl , utl)) also increases.

Remark 1: The lower bound C−1(O(ptl , utl)) is tight when
the target is known to be stationary. If uo ∈ {0}, O(ptl , utl) =
O(ptl) by (5) and (8). Thus, from (6) and Theorem 1,
the lower bound C−1(O(ptl , utl)) = C−1(O(ptl , utl)), which
implies that the lower bound is tight.

Next, we use these results for assigning sensors to targets.

IV. ASSIGNMENT ALGORITHMS

So far, we have assumed that we know the true position,
ptl(k), of the target at time k. In practice, we only have an
estimate, p̂tl(k), for tl along with its covariance Σtl(k). The es-
timate is obtained by fusing measurements using, for example,
an extended Kalman filter (EKF). We use the estimated position
of the target for the assignment algorithms in the simulation (see
Section V). This is a cyclical problem—in order to compute the
assignment to better estimate the state, we need an estimate of
the state to begin with. In practice, an initial estimate is present
based on some domain-specific information [33].

A. General Assignment as Submodular Welfare Optimization

We first study the general assignment (Problem 1) where
each target tl is tracked by a subset of sensors σ(tl) ⊂ S, l ∈
{1, 2, . . . , L} whose cardinality is not necessarily two. This is
known as submodular welfare problem in the literature [27]
where the objective is to maximize

∑n
i=1 wi(Si) for indepen-

dent sets {Si|Si ⊆ S, i = {1, 2, . . . , n}} by using monotone
and submodular utility functions wi. A greedy algorithm [26]
yields a 1/2–approximation for this problem. We first show that
the lower bound of the inverse of the condition number is nei-
ther monotone nor submodular. This is not surprising since it
has been shown that similar measures for analogous versions of
the controllability matrix are also not submodular or monotone
increasing [34].

Theorem 2: The lower bound of the inverse of condition
number function ω(·) is neither monotone increasing nor
submodular.

Proof: We prove the claim by giving two counterexamples.
Case 1: Given the sensors s1(0, 0), s2(2

√
3,−9), s3(

√
3, 3)

and target t1(
√
3, 1) with ut1,max = 1 in 2-D plane,

ω({s1, s3})=0.5345>ω({s1, s2, s3})=0.1823, which shows
ω(·) is not monotone increasing.

Case 2: Given the sensors s1(0, 0), s2(2
√
3, 0), s3(

√
3, 0.1),

s4(
√
3, 3) and target t1(

√
3, 1) with ut1,max = 1 in 2-D

plane, ω({s1, s2, s3})− ω({s1, s2}) = 0.3310− 0.5345 =
−0.2035 < ω({s1, s2, s4, s3})− ω({s1, s2, s4}) = 0.8765−
0.9258 = −0.0493, which shows ω(·) is not submodular. �

Therefore, we focus on other measures of observability and
summarize the results in Corollary 3.

Corollary 3: A corollary of [34, Ths. 4, 6, and 7]. The trace
and rank of the symmetric observability matrix, O(ptl , utl) :=
OT (ptl , utl)O(ptl , utl), and of the sensor-target relative state
contribution matrix, O(ptl) := OT (ptl)O(ptl), are submodu-
lar/modular and monotone increasing. The log determinant of
the two matrices is submodular and monotone increasing if the
corresponding matrix is nonsingular.

The reason that we also study the measures of the symmetric
observability matrix by sensor-target relative state contribution
is that the control input of the target is unknown, and thus the
symmetric observability matrix is not available. The proof pro-
vided in the appendix is similar to proving that the trace of the
Gramian is modular, and the log determinant, and the rank of
the Gramian are monotone submodular [34]. Note that if O(ptl)
is singular, its log determinant is −∞. In our sensor assignment
case, if a single sensor is assigned to target tl, O(ptl) is always
singular, i.e., det(O(ptl)) = 0 (see the proof of Corollary 1).
If no sensors are assigned to a target, then the matrix is not de-
fined. Thus, at least two sensors need to be assigned to a target
to ensure nonsingularity of O(ptl).

B. 1/3–Approximation Algorithm for Problem 2

Next, we study a more specific assignment (Problem 2)
where each target tl is tracked by a pair of sensors but al-
low the value function to be arbitrary. We propose a greedy
algorithm to solve this problem. In each round, we calcu-
late the observability metric ω(σ1(tl), σ2(tl), tl) for all triples
(σ1(tl), σ2(tl), tl), σ1(tl), σ2(tl) ∈ S, tl ∈ T , and select the
triple that has the maximum ω(σ1(tl), σ2(tl), tl), then remove
{σ1(tl), σ2(tl)} from sensor set S and remove tl from target set
T , respectively. We present the greedy approach in Algorithm 1
where ω(GREEDY) denotes total value obtained by the greedy
approach. In this case, we can use the inverse of the condition
number as ω(·).
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Theorem 3: ω(GREEDY) ≥ 1
3ω(OPT) where OPT is the

optimal algorithm for Problem 2. The running time for Algo-
rithm 1 is O(N2L2).

Proof: We first give the proof for the approximation ratio
of Algorithm 1. Recall that ω(GREEDY) and ω(OPT) will be
the sum of ω(·) terms of triples consisting of one target and the
two assigned sensors. As a shorthand, we will denote ωg(l) and
ω∗(l) to be the values of the triple assigned to tl by GREEDY
and OPT, respectively.

We show that there exists a many-to-one mapping M :
[1, . . . , L] → [1, . . . , L] such that the following conditions hold:

1) ω∗(k) ≤ ωg(M(k));
2) |M−1(y)| ≤ 3 for all y ∈ Y , where Y ⊆ [1, . . . , L] is the

range of M.
That is, each triple in OPT is mapped to some triple in

GREEDY whose value is at least as high and no triple in
GREEDY has more than three terms in OPT mapped to it.

We first show that if such a mapping exists, then the main
result holds. Then, we prove the existence of such a mapping by
constructing a specific M.

If such a mapping M exists, we prove ω(GREEDY) ≥
1
3ω(OPT) as follows:

ω(OPT) =
L∑

k=1

ω∗(k) ≤
L∑

k=1

ωg(M(k))

=
∑

y∈Y
ωg(y)|M−1(y)|

≤ 3
∑

y∈Y
ωg(y) ≤ 3

L∑

l=1

ωg(l)

= 3ω(GREEDY). (10)

The first inequality is due to ω∗(k) ≤ ωg(M(k)). The second
equality is because M maps each item in [1, . . . , L] to the set
Y . The second inequality is due to |M−1(·)| ≤ 3. The third
inequality is because Y ⊆ [1, . . . , L].

Next, we show that such a mapping always exists by con-
structing one. We will define M in the order in which the triples
are picked by GREEDY. Suppose GREEDY picks the triple
(si, sj , tl) in some round. Then, ωg(l) = ω(si, sj , tl). We will
map at most three triples in OPT to this triple in GREEDY. There
are following three cases.

1) (si, sj , tl) is also chosen by OPT [see Fig. 1(a)]. If
M(l) has not been defined in previous rounds, we define
M(l) = l. Note that here ωg(l) = ω∗(l) and |M−1(l)| =
1. Therefore, the two conditions for a valid mapping are
satisfied.

2) Exactly two of (si, sj , tl) appear in a triple chosen by
OPT [see Fig. 1(b)]. Consider the case where OPT chooses
(si, sj , tm) and (sp, sq, tl) where m �= l. All other cases
are symmetric. If M(m) has not been defined in a pre-
vious round, we define M(m) = l. Note that if M(m)
was not defined in a previous round, then ω∗(m) ≤ ωg(l).
Otherwise, GREEDY would pick the triple (si, sj , sm) in

Fig. 1. Optimal solution in three cases. In all cases, the GREEDY chooses the
triple (si, sj , tl). (a) Case 1: The OPT charges ω(si, sj , tl) to the same triple
(si, sj , tl) chosen by the GREEDY. (b) Case 2: The OPT charges ω(si, sj , tl)
to at most two triples—(si, sj , tm) and (sp, sq , tl). (c) Case 3: The OPT
charges ω(si, sj , tl) to at most three triples—(si, sp, tm), (sj , sq , tn), and
(su, sv , tl). Here, i �= j �= p �= q �= u �= v and l �= m �= n.

this round. Similarly, if M(l) is not defined in a previ-
ous round, we define M(l) = l. By a similar argument, if
M(l) was not defined in a previous round, ω∗(l) ≤ ωg(l).
Furthermore, |M−1(l)| = 2. Therefore, the two condi-
tions for a valid mapping are satisfied.

3) No two of (si, sj , tl) appear in the same triple chosen
by OPT. Suppose instead they appear in three distinct
triples, (su, sv, tl), (si, sp, tm), and (sj , sq, tn), as shown
in Fig. 1(c). We can use a similar argument as in the previ-
ous case. If any of l,m, and n were not mapped in a previ-
ous round, then we will map them to l. Furthermore, since
they were not mapped in a previous round, their value in
OPT cannot be greater than ωg(l). Finally, |M−1(l)| ≤ 3.
Therefore, the two conditions for a valid mapping are
satisfied.

Therefore, given such a mapping M, it follows that
ω(GREEDY) ≥ 1

3ω(OPT).
We next prove the running time for Algorithm 1. The “while”

loop runs forL rounds since all the targets must be tracked even-
tually. Inside the “while” loop, we compute all possible triples
and find the best one. This requires O(N2L) time. Overall,
Algorithm 1 runs in O(N2L2) time. �

Remark 2: It is possible to generalize this result to the case
where exactly n sensors are to be assigned to a target with
n ≥ 2. We can obtain a generalized bound, ω(GREEDY) ≥
1

n+1ω(OPT), by using a proof similar to that of Theorem 3.
A proof sketch is given in the appendix.

V. SIMULATIONS

We illustrate the performance of the assignment strategies for
sensor selection using observability measure as the performance
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Fig. 2. Greedy general assignment [26] in action for tracking three targets with a circular motion by using trace(O(ptl )). The three colors red, blue, and magenta
specify three targets, respectively. The pentagram, filled square, solid ellipse (sometimes, it looks like a solid circle), and the dotted circle indicate the true position,
estimate mean position, variance, and trajectory for the target, respectively. The black diamond indicates the sensor. The solid line joining the target and sensor
indicates that the sensor is assigned to the target. (a) k = 1 (initial time). (b) k = 60. (c) k = 100.

criterion. A video showing the algorithm in action is submitted
as supplementary material.

A. Greedy General Assignment

We first simulate the greedy assignment [26] for Problem 1 by
using the trace of the symmetric observability matrix by sensor-
target relative state contribution, trace(O(ptl)) as observability
measure that is monotone and submodular/modular as shown in
Corollary 3. Notably, for maximizing a modular function, the
greedy algorithm yields an optimal solution. We start with the
greedy assignment with eight stationary sensors and three tar-
gets moving in a circle and utl,max = 1, l ∈ {1, 2, 3} within
100 time steps in a 10× 10 environment. At each time step, we
use the greedy approach [26] to assign a set of sensors to each
target, and use the measurements of the set of sensors to update
the estimate of the target by EKF, as shown in Fig. 2. Notably,
some targets [say the red target in Fig. 2(a) and (c)] are left un-
tracked. This is because, in the general assignment (Problem 1),
the size of the set of sensors assigned to each target is flexible.
The objective of the assignment is to maximize the summation of
the observability measures from all the targets [see (1)] instead
of maximizing the worst case observability measure (say the red
target). Thus, in order to maximize the summation, some target
can be sacrificed, that is, left untracked. One idea for improving
the tracking performance is to assign at least two sensors to each
target. However, for this constraint, it is challenging to come up
with a polynomial-time optimal algorithm or approximation al-
gorithm. We can find a feasible assignment in polynomial time
by first assigning a pair of sensors to each target by Algorithm 1
and then perform the greedy general assignment for the follow-
ing sensors. However, the performance of the combination of
these two greedy algorithms cannot be readily bounded and is
an avenue of future work.

In order to further evaluate the greedy approach for the general
assignment, we set the number of targets asL = 5 and number of
sensors, N , from 20 to 50. For each N ∈ {20, 21, . . . , 50}, the

Fig. 3. Number of sensors assigned to each target.

positions of sensors and targets are randomly generated within
[0, 100]× [0, 100] ∈ R2 for 30 trials. We compare the number of
sensors assigned to one specific target, i.e., tl, l ∈ {1, 2, . . . , L}
with the N/L, as shown in Fig. 3. It shows that the sensors are
assigned to each target almost evenly.

B. Greedy Nonoverlapping Pair Assignment

We then simulate the greedy nonoverlapping pair assignment
(Algorithm 1) for solving Problem 2. With the same environment
setting, we start with simulating Algorithm 1 with trace(O(ptl))
as the observability measure (see Fig. 4). We know that the ob-
servability measure for greedy nonoverlapping pair assignment
does not have to be monotone submodular. Therefore, we use
the log determinant of the symmetric observability matrix by
sensor-target relative state contribution, log det(O(ptl)), and
the lower bound on the inverse of the condition number of the
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Fig. 4. Greedy nonoverlapping pair assignment (Algorithm 1) in action for tracking three targets with a circular motion by using trace(O(ptl )). The three colors
red, blue, and magenta specify three targets, respectively. The pentagram, filled square, solid ellipse (sometimes, it looks like a solid circle), and the dotted circle
indicate the true position, estimate mean position, variance, and trajectory for the target, respectively. The black diamond indicates the sensor. The solid line joining
the target and sensor indicates that the sensor is assigned to the target. (a) k = 1 (initial time). (b) k = 60. (c) k = 100.

Fig. 5. Greedy nonoverlapping pair assignment (Algorithm 1) in action for tracking three targets with a circular motion by using log det(O(ptl )). The three
colors red, blue, and magenta specify three targets, respectively. The pentagram, filled square, solid ellipse (sometimes, it looks like a solid circle), and the dotted
circle indicate the true position, estimate mean position, variance, and trajectory for the target, respectively. The black diamond indicates the sensor. The solid line
joining the target and sensor indicates that the sensor is assigned to the target. (a) k = 1 (initial time). (b) k = 60. (c) k = 100.

Fig. 6. Greedy nonoverlapping pair assignment (Algorithm 1) in action for tracking three targets with a circular motion by using C−1(O(ptl, utl )). The three
colors red, blue, and magenta specify three targets, respectively. The pentagram, filled square, solid ellipse (sometimes, it looks like a solid circle), and the dotted
circle indicate the true position, estimate mean position, variance, and trajectory for the target, respectively. The black diamond indicates the sensor. The solid line
joining the target and sensor indicates that the sensor is assigned to the target. (a) k = 1 (initial time). (b) k = 60. (c) k = 100.
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Fig. 7. Comparison of (a) mean error and (b) trace of covariance for three-
target tracking within 100 time steps by greedy general assignment [26] with
trace(O(ptl )) and greedy nonoverlapping pair assignment (Algorithm 1) with
trace(O(ptl )).

observability matrix, C−1(O(ptl , utl)), for the assignment. The
assignments for a specific scenario are shown in Figs. 5 and 6.
Note that even though a pair of sensors is assigned to target tl,
O(ptl) is not always nonsingular.

For each target tl, the estimate generated by EKF includes its
mean position p̂tl and variance Σtl , l ∈ {1, 2, 3}. To evaluate
the tracking performance, denote the mean error as

errtl = ‖p̂tl − ptl‖2 (11)

and the trace of covariance as tr(Σtl). Fig. 7 shows errtl and
tr(Σtl) for each target tl with the greedy algorithms to the two
assignment problem and with trace(O(ptl)) as the measure. We
can observe that the greedy general assignment performs bet-
ter for some target (e.g., t2), but performs worse for target t1 as
compared to the nonoverlapping pair assignment [see Fig. 7(b)].
Both algorithms maximize the sum of the observability measures
for the three targets. In the nonoverlapping pair assignment, a
pair of sensors is always assigned to each target, whereas in the

Fig. 8. Comparison of (a) mean error and (b) trace of covariance for three-
target tracking within 100 time steps by greedy nonoverlapping pair assignment
(Algorithm 1) with C−1(O(ptl )), log det(O(ptl )), and trace(O(ptl )).

general assignment, there are situations where no sensors are as-
signed to a target. This can be due to the fact that it is profitable
to assign more than two sensors to some target in order to max-
imize the sum. We can observe the happening in Fig. 2 where
there exist some time steps (e.g., k = 100) when less than two
sensors are assigned to a target (red), which leads to a bad track-
ing performance for individual targets in the general assignment
case (see Corollary 1). However, in all cases, the greedy general
assignment [26] ensures that the sum of individual measures is
within a factor of 2 of the optimal sum.

Fig. 8 shows the tracking performance with the inverse con-
dition number and log det is comparable. The performance with
trace is worse as compared to the other two. However, we can
only use the trace for the greedy general assignment, since it is
submodular and monotone. This exactly reflects the importance
of our greedy nonoverlapping pair assignment that better ob-
servability measures, i.e., log det and inverse condition number,
which are not necessarily submodular and monotone, are also
allowed.
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C. Baseline Comparisons

The nonoverlapping pair assignment (Problem 2) is NP-
complete. Therefore, findingω(OPT) is infeasible in polynomial
time. In order to empirically evaluate the greedy nonoverlapping
pair assignment (Algorithm 1), we use two baselines. When the
number of sensors and targets is small, we compute the optimal
solution using brute-force search. When the number of sensors
and targets is large, we compute an upper bound on the optimal
solution value by solving a relaxed version of Problem 2. In this
relaxed version, one sensor is allowed to be assigned to multiple
targets (unlike Problem 2). However, we still require a pair of
sensors to be assigned to at most one specific target.

We formulate the new assignment as relaxed pair assignment
(Problem 3). It is clear that solving relaxed pair assignment
problem optimally gives us an upper bound of the optimal-
ity for nonoverlapping pair assignment problem. We can use
this upper bound for the comparison of the greedy approach in
nonoverlapping pair assignment.

Problem 3 (Relaxed Pair Assignment): Given a set of sen-
sors,S := {s0, . . . , sN}, and a set of targets,T := {t0, . . . , tL},
find an assignment of nonrepetitive pairs of sensors to targets

maximize
L∑

l=1

ω(σ1(tl), σ2(tl), tl) (12)

with the added constraint that all pairs are nonrepetitive, i.e.,
∀k, l = 1, . . . , L, k �= l, σ1(tk) �= σ1(tl) or σ2(tk) �= σ2(tl).

The relaxed pair assignment can be solved optimally by using
maximum weight perfect bipartite matching (MWPBM) [35].
Note that a sensor can be matched in multiple distinct pairs
and assigned to multiple targets. This violates the constraint in
Problem 2 where each sensor can be matched to at most one pair
and assigned at most once. The MWPBM can be solved using
the Hungarian algorithm [14] in polynomial time.

While the relaxed pair assignment computes an upper bound
for ω(OPT), we can compute ω(OPT) exactly using the
brute-force when N and L are small by enumerating all the
possibilities. There are

∏L−1
l=0

(
N−2l

2

)
possible cases. Thus, the

brute-force algorithm has an exponential running time.
Fig. 9 shows the total value of the greedy algorithm,

ω(GREEDY), the brute-force algorithm, ω(OPT), and the MW-
PBM, ω(MWPBM), for log det and inverse condition num-
ber. We simulate the following environment: N = 2L, the
positions of sensors and targets are generated randomly within
[0, 100]× [0, 100] ∈ R2 for 30 trials for each L, and the target’s
maximum control input is uo,max = 1.

We run the comparison code on a MacBook Pro with 2.6 GHz
Intel Core i5 and 8 GB memory. When L = 7 and N = 14,
MATLAB runs out of memory when running the brute-force
algorithm (there are 681 080 400 possible cases for each trial).
When L = 6 and N = 12, the brute-force could not finish after
running for 25 h. Thus, we only consider the case when L is
varied from 1 to 5.

From Fig. 9, we observe that ω(MWPBM) is the highest
because the MWPBM gives the upper bound of ω(OPT).
Specifically, the average of ω(GREEDY)/ω(OPT) and
ω(GREEDY)/ω(MWPBM) for L={1, . . . , 5} is as follows.

Fig. 9. Comparison of the total value charged by greedy approach
(Algorithm 1) with the brute-force algorithm and the maximum perfect pair
matching by using (a) log det log(det(O(ptl ))) and (b) inverse condition num-
ber C−1(O(ptl , utl )), respectively.

For the log det measure [see Fig. 9(a)], ω(GREEDY)/ω(OPT)
≈ 0.97, whereas ω(GREEDY)/ω(MWPBM) ≈ 0.93. For the
inverse condition number [see Fig. 9(b)], ω(GREEDY)/
ω(OPT) ≈ 0.96, whereas ω(GREEDY)/ω(MWPBM)≈0.83.
In both cases,ω(GREEDY) is close toω(OPT) and much higher
than the theoretical bound of 1

3ω(OPT), which suggests that
in practice the algorithm works even better than the theoretical
bound.

Next, we compare ω(GREEDY) and ω(MWPBM), with-
out the brute-force, for larger values of L and N . We vary L
from 1 to 20 and set N = 2L. For both observability measures,
Fig. 10 shows that ω(GREEDY) is close to ω(MWPBM) and
much higher than 1

3ω(MWPBM). We also compute the average
of ω(GREEDY)/ω(MWPBM) when L = {1, . . . , 50}. For the
log detmeasure [see Fig. 10(a)],ω(GREEDY)/ω(MWPBM) ≈
0.90. For the inverse condition number [see Fig. 10(b)],
ω(GREEDY)/ω(MWPBM) ≈ 0.87. Thus, even though we give
a theoretical 1/3–approximation for the greedy algorithm, it per-
forms much better in practice. This is because the approximation
ratio is obtained by considering the worst-case performance of
the greedy algorithm.
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Fig. 10. Comparison of the total value charged by greedy approach
(Algorithm 1) with the maximum perfect pair matching by using (a) log det
log(det(O(ptl ))) and (b) inverse condition number C−1(O(ptl , utl )), re-
spectively.

VI. CONCLUSION

In this paper, we solved sensor assignment problems to im-
prove the observability for target tracking. We derived the lower
bound on the inverse of the condition number of the observabil-
ity matrix for a system with a mobile target and N stationary
sensors. The lower bound considers only the known part of the
observability matrix—the sensor-target relative position and an
upper bound on the target’s speed. We showed how this lower
bound can be employed for sensor selection. We considered two
sensor assignment problems for which we presented constant-
factor approximation algorithms. While we presented the two al-
gorithms as alternatives to each other, they can also be combined
to give better results. We proved the log det, log det(O(ptl)),
is submodular and monotone only when O(ptl) is nonsingular
and performs better in terms of tracking than the trace (which
is submodular and monotone). We can combine the greedy gen-
eral assignment with the greedy nonoverlapping pair assignment
to use log det as the observability measure. First, we use the

nonoverlapping assignment to assign a pair of sensors to each
target to make sure that O(ptl) is nonsingular. Then, we can
improve the assignment strategy by using the greedy general
assignment strategy to assign more sensors to each target.

Our immediate work is focused on assigning sensors to cover
an area instead of tracking a group of targets. Another avenue
is designing an efficient set covering strategy based on observ-
ability measures that are submodular and monotone. In many
scenarios, the sensors are actually robots that are mobile [3],
[36]–[42]. In such cases, in addition to solving the assignment
problem, we can also optimize the trajectories of the sensors.
An immediate future work is to devise joint assignment and
planning algorithms for better observability.

Many of the results presented can be easily extended to 3-
D tracking. We conjecture that at least three sensors will be
required for ensuring nontrivial lower bounds of the inverse
condition number in 3-D. The nonoverlapping pair assignment
can be extended to assigning nonoverlapping triplets. We know
that this algorithm will yield a 1/4–approximation based on the
general result given in Theorem 3.

APPENDIX

A. Proof for Theorem 1

Proof: The singular values of O(ptl , utl) can be found as the
square root of the eigenvalues of the symmetric observability
matrix, O(ptl , utl), given as [43]

O(ptl , utl) = OT (ptl , utl)O(ptl , utl)

= OT (ptl)O(ptl) +OT (utl)O(utl) (13)
{√

λmin(O(ptl , utl)) = σmin(O(ptl , utl))
√

λmax(O(ptl , utl)) = σmax(O(ptl , utl))
.

(14)

We can use Weyl and dual Weyl inequalities to bound the sin-
gular values. For Hermitian matrices X and Y with r eigenval-
ues written in increasing order λ1(X) ≤ λ2(X) ≤ · · · ≤ λr(X)
and λ1(Y ) ≤ λ2(Y ) ≤ · · · ≤ λr(Y ), respectively, the Weyl
inequalities [44] are given by

λi+j−1(X + Y ) ≥ λi(X) + λj(Y ) (15)

where i, j ≥ 1 and i+ j − 1 ≤ r. Similarly, the dual Weyl in-
equalities are given by

λi+j−r(X + Y ) ≤ λi(X) + λj(Y ) (16)

where i, j ≥ 1 and i+ j − r ≤ r.
Since O(ptl , utl) ∈ R2×2, OT (ptl)O(ptl) ∈ R2×2, and

OT (utl)O(utl) ∈ R2×2 are symmetric matrices, they are
Hermitian with the eigenvalues (in ascending order) as
λ1(O(ptl , utl)) ≤ λ2(O(ptl , utl)), λ1(O

T (ptl)O(ptl)) ≤
λ2(O

T (ptl)O(ptl)), and λ1(O
T (utl)O(utl)) ≤ λ2(O

T (utl)
O(utl)). Following the Weyl and dual Weyl inequalities, we get

λ1(O(ptl , utl)) ≥ λ1(O
T (ptl)O(ptl)) + λ1(O

T (utl)O(utl))

λ2(O(ptl , utl)) ≤ λ2(O
T (ptl)O(ptl)) + λ2(O

T (utl)O(utl)).
(17)
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Thus

λ1(O(ptl , utl))

λ2(O(ptl , utl))

≥ λ1(O
T (ptl)O(ptl)) + λ1(O

T (utl)O(utl))

λ2(OT (ptl)O(ptl)) + λ2(OT (utl)O(utl))
. (18)

Then, from (14) and (18), the inverse of the condition number
of the local nonlinear observability matrix

C−1(O(ptl , utl)) =

√
λ1(O(ptl , utl))

λ2(O(ptl , utl))

≥
√

λ1(OT (ptl)O(ptl)) + λ1(OT (utl)O(utl))

λ2(OT (ptl)O(ptl)) + λ2(OT (utl)O(utl))
. (19)

Thus, we have the lower of the inverse of the condition number
√

λ1(OT (ptl)O(ptl)) + λ1(OT (utl)O(utl))

λ2(OT (ptl)O(ptl)) + λ2(OT (utl)O(utl))
. (20)

By calculating the eigenvalues of symmetric matrix of target’s
control contribution

OT (utl)O(utl) =

[
u2
lx ulxuly

ulyulx u2
ly

]

we have

λ1(O
T (utl)O(utl)) = 0

λ2(O
T (utl)O(utl)) = u2

lx + u2
ly = u2

tl
. (21)

Then, the lower bound of C−1(O(o, uo)) [see (20)] is calculated
as

C−1(O(ptl , utl)) =

√
λ1(OT (ptl)O(ptl))

λ2(OT (ptl)O(ptl)) + u2
tl

=
σmin(O(ptl))√

σ2
max(O(ptl)) + u2

tl

. (22)

Equation (22) gives the main lower bound. Note that
C−1(O(ptl , utl)) cannot be determined since target’s control in-
put utl is unknown. However, we know that ||utl ||2 ≤ utl,max.
Therefore

C−1(O(ptl , utl)) ≥
σmin(O(ptl))√

σ2
max(O(ptl)) + u2

tl,max

. (23)

This yields our main lower bound result. �

B. Proof for Corollary 1

Proof: The local observability matrix for one-sensor-target
si − tl system can be derived from (5) as

Oi(ptl , utl) =

[
xtl − xsi ytl − ysi

ulx uly

]
. (24)

The sensor-target relative state contribution is

Oi(ptl) =
[
xtl − xsi ytl − ysi

]
. (25)

The si − tl system is weakly locally observable if Oi(ptl , utl)
has full column rank, i.e., (xtl − xsi)uly �= (ytl − ysi)ulx.
However, the sensor does not know the target’s control input
utl .

Given the symmetric matrix by sensor-target relative state
contribution of si − tl system

OT
i (ptl)Oi(ptl) =

[
(xtl − xsi)

2, (xtl − xsi)(ytl − ysi)

(xtl − xsi)(ytl − ysi), (ytl − ysi)
2

]

(26)

we have
⎧
⎪⎪⎨

⎪⎪⎩

σmin(Oi(ptl)) =
√

λmin(OT
i (ptl)Oi(ptl)) = 0

σmax(Oi(ptl)) =
√

λmax(OT
i (ptl)Oi(ptl))

=
√

(xtl − xsi)
2 + (ytl − ysi)

2

. (27)

Thus, from (22), the lower bound for C−1(Oi(ptl , utl)) is
σmin(Oi(ptl

))√
σ2
max(Oi(ptl

))+u2
tl

= 0. Consequently, the lower bound cannot

be controlled by the sensor. �

C. Proof for Corollary 2

Proof: According to (14), we have

σmin(O(ptl , utl))

σmax(O(ptl , utl))
=

√
λmin(O(ptl , utl))√
λmax(O(ptl , utl))

. (28)

Following (18) and (21), we have the lower bound for
λmin(O(ptl

,utl
))

λmax(O(ptl
,utl

)) , described as

λmin(O(ptl , utl))

λmax(O(ptl , utl))
≥ λmin(O

T (ptl)O(ptl))

λmax(OT (ptl)O(ptl)) + u2
tl

. (29)

Now, we equivalently rewrite the statement of the theorem (using
eigenvalues instead of singular values) as: if

⎧
⎨

⎩

λmin(O
′T

(ptl
)O

′
(ptl

))

λmax(O
′T (ptl

)O′ (ptl
))

≥ λmin(O
T (ptl

)O(ptl
))

λmax(OT (ptl
)O(ptl

))

λmin(O
′T
(ptl)O

′
(ptl)) ≥ λmin(O

T (ptl)O(ptl))

(30)

then

λmin(O
′T
(ptl)O

′
(ptl))

λmax(O
′T (ptl)O

′(ptl)) + u2
tl

≥ λmin(O
T (ptl)O(ptl))

λmax(OT (ptl)O(ptl)) + u2
tl

(31)

where λ and λ′ denote the eigenvalues before and after the
sensors increase C−1(O(ptl)) and σmin(O(ptl), respectively.

We start with the left-hand side of (31) to get

λ
′
min,l

λ
′
max,l + u2

tl

− λmin,l

λmax,l + u2
tl

=
λ

′
min,lλmax,l − λ

′
max,lλmin,l

(λ
′
max,l + u2

tl
)(λmax,l + u2

tl
)

+
u2
tl
(λ

′
min,l − λmin,l)

(λ
′
max,l + u2

tl
)(λmax,l + u2

tl
)

(32)

where λ
′
min,l, λ

′
max,l, λmin,l, and λmax,l denote the simpli-

fied forms of λmin(O
′T
(ptl)O

′
(ptl)), λmax(O

′T
(ptl)O

′
(ptl)),
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λmin(O
T (ptl)O(ptl)), and λmax(O

T (ptl)O(ptl)), respectively.
Note that (30) can be reordered to match the numerator in the
second line of (32). Then, we have

λ
′
min,l

λ
′
max,l + u2

tl

− λmin,l

λmax,l + u2
tl

≥ 0. (33)

�
Remark 3: Equation (30) is a sufficient, but not necessary

condition to guarantee (31). This is because (31) can be estab-
lished with a weaker condition

λ
′

min,lλmax,l − λ
′

max,lλmin,l + u2
tl
(λ

′

min,l − λmin,l) ≥ 0.

We choose the stricter condition [see (30)] because it is con-
ceptually easy to separate and eliminate the influence on the
degree of observability from target’s control input utl , which is
unknown and uncontrolled.

D. Proof for Corollary 3

The proofs of the following lemmas follow the steps of the
proofs in [34, Ths. 4, 6, and 7]. We first give the proofs of the
properties of the symmetric observability matrix by sensor-target
relative state contribution, O(ptl). Then, we obtain the simi-
lar result for the symmetric observability matrix, O(ptl , utl),
by a minor extension. For the target tl, denote its sensor-
target relative state vector as ril = [xtl − xsi, ytl − ysi], i ∈
{1, 2, . . . , N}. Denote its ground sensor-target relative state
set as V = {r1l, r2l, . . . , rNl}. For a given W ⊆ V , we form
RW = [R0l, rwl]

T with an (possibly empty) existing matrix R0l

and the associated sensor-target relative vector rwl ∈ W . We cal-
culate the associated symmetric observability matrix by sensor-
target relative state contribution as O(ptl)W = RT

wlRwl. To sim-
plify notation, we write O(ptl)W as OW .

Lemma 1: The set function mapping subsets W ⊆ V to the
trace of the associated symmetric observability matrix by sensor-
target relative state contribution,f(W) = trace(OW) is modular
(submodular) and monotone increasing.

Proof: The symmetric observability matrix by sensor-target
relative state contribution associated with W , OW can be
calculated as

OW = RT
wlRwl =

∑

rwl∈W
rTwlrwl. (34)

Thus, for any W ⊆ V , OW is simply a sum of the symmetric
observability matrix by sensor-target relative state contribution
associated with the individual rows of RW . Given the trace is a
linear matrix function, we have

f(W) = trace(OW)

= trace
∑

rwl∈W
rTwlrwl

=
∑

rwl∈W
trace(rTwlrwl). (35)

If no sensors are assigned to the target tl, define trace(∅) = 0.
Then, we have f(W) = trace(OW) is a modular (submodular)
and monotone increasing set function. �

Lemma 2: The set function mapping subsets W ⊆ V to
the rank of the associated symmetric observability matrix by
sensor-target relative state contribution, f(W) = rank(OW) is
submodular and monotone increasing.

Proof: Given two linear transformations Q1, Q2 ∈ Rn×n,
we have

rank(Q1 +Q2)

= rank(Q1) + rank(Q2)

− dim(range(Q1) ∩ range(Q2)). (36)

From [45], we know that a set function f : 2V → R is submod-
ular if and only if the derived set functions fr : 2V−{r} → R

fr(W) = f(W ∪ {r})− f(W)

are monotone decreasing for all r ∈ V . We can form the marginal
gain functions for rank measure as

fr(W) = rank(OW∪r)− rank(OW)

= rank(Or)− dim(range(OW) ∩ range(Or)). (37)

Note that rank(Or) is a constant and dim(range(OW)) only in-
creases with W . Thus, fr is monotone decreasing, which means
f(W) = rank(QW) is a submodular function. From the addi-
tivity property of the OW [see (34)], it is clear that f(W) =
rank(QW) is monotone increasing. �

Lemma 3: The set function mapping subsets W ⊆ V to
the log det of the associated symmetric observability ma-
trix by sensor-target relative state contribution, f(W) =
log det(OW) is submodular and monotone increasing if OW is
nonsingular.

Proof: We use the similar idea to show the submodularity
of the log det measure, namely, showing that the derived set
functions fr : 2V−{r} → R

fr(W) = log det(OW∪r)− log det(OW)

= log det(OW + Or)− log det(OW)

are monotone decreasing for any r ∈ V . Take any W1 ⊆ W2 ⊆
V − {r}. By the additivity property of the OW [see (34)],
it is clear that W1 ⊆ W2 ⇒ OW1

� OW2
. Define O(γ) =

OW1
+ γ(OW2

− OW1
) for γ ∈ [0, 1]. Clearly, O(0) = OW1

and O(1) = OW2
. Now define

f̂r(O(γ)) = log det(O(γ) + Or)− log det(O(γ)). (38)

Note that f̂r(O(0)) = f̂r(OW1
) and f̂r(O(1)) = f̂r(OW2

). We
have

d

dγ
f̂r(O(γ)) =

d

dγ
[log det(O(γ) + Or)− log det(O(γ))]

= trace[(O(γ) + Or)
−1(OW2

− OW1
)]

− trace[(O(γ))−1(OW2
− OW1

)]

= trace[((O(γ) + Or)
−1 − (O(γ))−1)(OW2

− OW1
)]

≤ 0. (39)
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The second equality follows by the matrix derivative for-
mula d

dt log detX(γ) = trace[X(γ)−1 d
dγX(γ)] [46]. Notably,

since O(γ) � 0 and Or � 0, we have O(γ) + Or � O(γ)
and thus (O(γ) + Or)

−1 − (O(γ))−1 � 0. Given (O(γ) +
Or)

−1 − (O(γ))−1 � 0, and OW2
− OW1

� 0, the last in-
equality holds. Since

f̂r(O(1)) = f̂r(O(0)) +

∫ 1

0

d

dγ
f̂r(O(γ))dγ

it follows that f̂r(O(1)) = f̂r(OW2
) ≤ f̂r(O(0)) = f̂r(OW1

).
Thus, we have fr is monotone decreasing, and f is submodular.
Similarly, the additivity property of OW [see (34)] shows that f
is monotone increasing.

However, the proof of the monotonicity and submodularity for
the log det is based on the condition that O(ptl) is nonsingular.
Otherwise, the conclusion does not hold. For example, if a single
sensor is assigned to target tl, O(ptl) is always singular (see the
proof of Corollary 1), and thus log detO(ptl) = −∞. If no sen-
sors are assigned, we define the empty set case as log det(∅) = 0.
Then, the function is not monotone increasing.

The proof of the monotonicity and submodularity for the
trace, rank, and log det of the symmetric observability matrix,
O(ptl , utl) := OT (ptl , utl)O(ptl , utl), is similar to the proof
for that of the symmetric observability matrix by the sensor-
target relative state contribution, O(ptl), as provided above.
Because, from (13), we know

O(ptl , utl) = O(ptl) +OT (utl)O(utl). (40)

The unknown control input contribution OT (utl)O(utl) � 0
does not affect the properties of the measures for the symmet-
ric observability matrix, O(ptl , utl), since assigning sensors
only influences the sensor-target relative state contribution part,
O(ptl) . But for the log det of symmetric observability matrix,
we need to guarantee O(ptl , utl) is nonsingular. �

E. Proof Sketch for Remark 2

First, by listing n+ 1 cases (similar to the three cases in the
proof of Theorem 3), we show that there exists a many-to-one
mapping Mn : [1, . . . , L] → [1, . . . , L] such that the following
conditions hold:

1) ω∗
n(k) ≤ ωg

n(Mn(k));
2) |M−1

n (y)| ≤ n+ 1 for all y ∈ Y , where Y ⊆ [1, . . . , L]
is the range of Mn.

Denote ω∗
n(k) and ωg

n(Mn(k)) as the values of the n+ 1-
tuple assigned to target tk by OPT and to target Mn(k) by
GREEDY, respectively.

Second, following the steps in (10) and replacing the scalar
3 by n+ 1, we reach the n+ 1 approximation in this general
case.
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