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Abstract— We study the problem of reducing the amount of
communication in decentralized target tracking. We focus on
the scenario, where a team of robots is allowed to move on the
boundary of the environment. Their goal is to seek a formation
so as to best track a target moving in the interior of the
environment. The robots are capable of measuring distances to
the target. Decentralized control strategies have been proposed
in the past, which guarantees that the robots asymptotically
converge to the optimal formation. However, existing methods
require that the robots exchange information with their neighbors
at all time steps. Instead, we focus on decentralized strategies to
reduce the amount of communication among robots. We propose
a self-triggered communication strategy that decides when a
particular robot should seek up-to-date information from its
neighbors and when it is safe to operate with possibly outdated
information. We prove that this strategy converges asymptotically
to the desired formation when the target is stationary. For the
case of a mobile target, we use a decentralized Kalman filter
with covariance intersection to share the beliefs of neighboring
robots. We evaluate all the approaches through simulations and a
proof-of-concept experiment.

Note to Practitioners—We study the problem of tracking a
target using a team of coordinating robots. Target tracking
problems are prevalent in a number of applications, such as
co-robots, surveillance, and wildlife monitoring. Coordination
between robots typically requires communication amongst them.
Most multi-robot coordination algorithms implicitly assume that
the robots can communicate at all time steps. Communication
can be a considerable source of energy consumption, especially
for small robots. Furthermore, communicating at all time steps
may be redundant in many settings. With this as motivation,
we propose an algorithm where the robots do not necessarily
communicate at all times and instead choose specific triggering
time instances to share information with their neighbors. Despite
the limitation of limited communication, we show that the
algorithm converges to the optimal configuration both in theory
as well as in simulations.

Index Terms— Multi-robot systems, networked control, target
tracking.
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I. INTRODUCTION

TARGET tracking is one of the more well-studied
problems in the robotics community [1] and finds

many applications, such as surveillance [2]–[4], crowd
monitoring [5], [6], and wildlife monitoring [7], [8]. We study
active target tracking with a team of robots, where the focus
is on actively controlling the state of the robot. The robots
can exchange information with each other and then decide
how to move so as to best track the target. It is typically
assumed that exchanging information is beneficial. It is typical
to design strategies by assuming that the robots will exchange
their information at each time step irrespective of whether that
information is worth exchanging. In this paper, we investigate
the problem of deciding when it is worthwhile for the robots
to exchange information and when it is okay to use possibly
outdated information.

The motivation for this paper stems from the observation
that communication can be costly. For example, for smaller
robots, radio communication can be a significant source of
power consumption. The robots can extend their lifetime by
reducing the time spent communicating (equivalently, number
of messages sent). Our goal is thus to determine a strategy
that communicates only when required without considerably
affecting the tracking performance.

We study this problem in a simple target tracking scenario
first introduced by Martínez and Bullo [9]. Here, the robots
are restricted to move on the boundary of a convex environ-
ment. They can obtain distance measurements toward a target
moving in the interior. The goal of the robots is to position
themselves so as to maximize the information gained from the
target. Our problem setup models scenarios where the robots
cannot enter into the interior of the environment. For example,
Pierson et al. [10] studied pursuit-evasion, where the pursuers
are not allowed to enter “no-fly zones”. If the evader enters
a “no-fly zone”, then the pursuers reposition themselves on
the perimeter of a convex approximation of the zone. Another
motivating application is that of tracking radio-tagged fish [8]
using ground robots that can move only along the boundary
of the environment.

Martínez and Bullo [9] proposed a decentralized strategy
where the robots communicate at all time steps with their
neighbors and proved that it converges to the optimal (uniform)
configuration. Instead, we apply a self-triggered coordination
algorithm (following recent works [11], [12]) where each robot
decides when to trigger communications with its neighbors.
We apply this strategy to the aforementioned target tracking
scenario and compare its performance relative to the constant
strategy in simulations.
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Next, we study the problem where the robots obtain noisy
measurements of the distance to the targets. In a decentral-
ized setting, robots can exchange information only with their
neighbors. As a result, their local estimates of the target’s
position may differ considerably, resulting in poor tracking,
especially when the robots are not in a uniform configuration.
We show how to use a decentralized Kalman filter estimator
that fuses the beliefs shared by neighboring robots (at triggered
instances) to a common estimate.

Our main results assume that the robots have sufficiently
large communication and sensing ranges. In Section V-B,
we present necessary conditions on the sensing and communi-
cation ranges for our results to hold. We also present sufficient
conditions for a modified version of the self-triggered strategy
to guarantee convergence.

Simulation results validate the theoretical analysis, showing
that the self-triggered strategy converges to the optimal, uni-
form configuration. The average number of communication
is less than 30% that of the constant strategy. We also
demonstrate the performance of the algorithm through proof-
of-concept experiments with five simulated and two actual
robots coordinating with each other.

The rest of this paper is organized as follows. We start by
surveying the related works in Section II. We formalize the
problem in Section III. The self-triggered tracking strategy is
presented in Section IV, assuming that the target’s position is
known and is fixed. We relax these assumptions and present
two practical extensions in Section V for noisy measurements
and limited sensing and communication ranges. The simulation
results are presented in Section VI. We conclude with a
discussion of future work in Section VII.

A preliminary version of this paper was first presented
in [13] without the decentralized Kalman filter with covari-
ance intersection and the analysis for the limited commu-
nication and sensing ranges (see Section V), the Gazebo
simulation experiments, and the proof-of-concept experiment
(see Section VI).

II. RELATED WORK

Multi-robot target tracking has been widely studied in
robotics [14], [15]. Robin and Lacroix [14] surveyed multi-
robot target detection and tracking systems and presented
a taxonomy of relevant works. Khan et al. [15] classified
and discussed control techniques for multi-robot multi-target
monitoring and identified the major elements of this prob-
lem. Hausman et al. [16] proposed a centralized cooperative
approach for a team of robots to estimate a moving target.
They showed how to use onboard sensing with limited sensing
range and switch the sensor topology for effective target
tracking. Dias et al. [17] proposed a multi-robot triangulation
method to deal with initialization and data association issues
in bearing-only sensors. The robot communicates locally to
exchange and update the estimate beliefs of the target by
a decentralized filter. Franchi et al. [18] presented a decen-
tralized strategy to ensure that the robots follow the target
while moving around it in a circle. They assume that the
robots are labeled. Similar to this paper, the robots attempt to
maintain a uniform distribution on a (moving) circle around

Fig. 1. Mapping from convex boundary ∂Q to unit circle T.

the target. However, unlike this paper, they require that the
robots constantly communicate with their local neighbors.

Sung et al. [19] proposed a distributed approach for multi-
robot assignment problem for multi-target tracking by taking
both sensing and communication ranges into account. The
goal of their work is also to limit the communication between
the robots. However, they do so by limiting the number of
messages sent at each time step but allow the robots to
communicate at all time steps. Instead, this paper explicitly
determines when to trigger communication with other robots.

This paper builds on event-triggered and self-triggered
communication schemes studied primarily by the controls
community [12], [20]. Dimarogonas et al. [21] presented
both centralized and decentralized event-triggered strategies
for the agreement problem in multi-agent systems. They
extended the results to a self-triggered communication setting
where the robot calculates its next communication time
based on the previous one without monitoring the state
error. Nowzari and Cortés [11] proposed a decentralized self-
triggered coordination algorithm for the optimal deployment
of a group of robots based on spatial partitioning techniques.
The synchronous version of this algorithm converges
comparatively with an all-time communication strategy.

To the best of our knowledge, our paper is the first to
simultaneously handle both robot coordination [18] and target
tracking [17]. We focus on applying self-triggered control to
reduce the amount of local communication between neighbors.

III. PROBLEM FORMULATION

Consider a group of N robots moving on the boundary of
a convex polygon Q ⊂ R

2. Let ∂Q denote the boundary
of Q. The robots are tasked with tracking a target with
position o located in the interior of Q. Let p1, . . . , pN denote
the positions of the robots. We can map any point on ∂Q to a
unit circle T using the transformation ϕo : ∂Q → T, given by

ϕo(p) = p − o

‖p − o‖ (1)

as shown in Fig. 1. We identify every robot’s position with the
corresponding point on the unit circle. That is, pi ∈ ∂Q ⊂ R

2

is identified with θi = ϕo(pi) ∈ T, indicating the location on
the circle T of robot i . Let θ = (θ1, . . . , θN ) ∈ T

N denote the
vector of locations of all robots.

We assume that all robots follow simple first-order
continuous-time motion model. Each robot i knows its own
position exactly at all times. When two robots communicate,
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they can exchange their respective positions. We also assume
that all robots have sensors that cover the environment and
can always communicate with their neighbors (i.e., robot i
can communicate with i + 1 and i − 1). In Section V-B,
we derive necessary and sufficient conditions of the sensing
and communication range.

Let ωmax denote the common maximum angular speed1 for
all robots on the unit circle. Our results can be extended to
the situation where each robot has its own maximum angular
speed.

Martínez and Bullo [9] showed that the optimal configu-
ration for the robots that can obtain distance measurements
toward the target is a uniform configuration along the circle
where each pair of neighboring robots is equally spaced around
the target. That is, θi+1 − θi = 2π/N,∀i ∈ {1, . . . , N}.
Optimality is defined with respect to maximizing the deter-
minant of the Fisher information matrix (FIM). FIM is
a commonly used measure for active target tracking.
Martínez and Bullo [9] presented a decentralized control law
that is guaranteed to (asymptotically) converge to a uniform
configuration when a robot is allowed to communicate with
only two of its immediate neighbors. That is, a robot i can
communicate with only i − 1 and i + 1 along the circle.
The analysis requires that all robots know the position of
the target exactly and that the target remains stationary.
Martínez and Bullo [9] showed how to apply the same control
law in situations where the target’s position is not known
exactly and is instead estimated by combining noisy range
measurements in an extended Kalman filter (EKF). They also
evaluated the performance of the algorithm empirically in
cases where the target is allowed to move.

The control law in [9] assumes that the neighboring robots
communicate at every time step. We call this the constant
strategy. Our objective in this paper is to reduce the number of
communications between the robots while still maintaining the
convergence properties. We present a self-triggered strategy
where the control law for each robot not only decides how
a robot should move but also when it should communicate
with its neighbors and seek new information. We show that the
proposed self-triggered strategy is also guaranteed to converge
to a uniform configuration under the model and assumptions
described in this section.

IV. SELF-TRIGGERED TRACKING ALGORITHM

In this section, we present the self-triggered tracking algo-
rithm for achieving a uniform configuration along the unit
circle. This requires knowing the center of the circle (i.e.,
the target’s position) and assuming that this center does not
change. These assumptions are required for the convergence
analysis to hold. We later relax these assumptions and present
a practical version in Section V.

Our algorithm builds on the self-triggered
centroid algorithm [11] that is a decentralized
control law that achieves optimal deployment (i.e., uniform
Voronoi partitions) in a convex environment. We suitably

1Strictly speaking, each robot has a maximum speed with which it can move
on ∂Q. In the Appendix, we show how the maximum speed on ∂Q can be
used to determine ωmax.

Fig. 2. Robot i goes toward the midpoint of its Voronoi segment via exact
information from its neighbors.

modify this algorithm for the cases where the robots are
restricted to move only on the boundary, ∂Q, and can
communicate with only two neighbors, as described in
Section III. We first present the control law for each of the
robots that use the motion prediction set of its neighbors
based on their last known positions. Then, we present an
update policy to decide when a robot should communicate
and seek new information from its neighbors.

A. Control Law

The constant control law in [9] drives every robot toward
the midpoint of its Voronoi segment. The Voronoi segment
of the robot i is the part of the unit circle extending from
(θi−1 + θi )/2 to (θi + θi+1)/2. The constant control law steers
robot i toward the midpoint of its Voronoi segment V i

mid by
using real-time (at every time step)2 information from its
neighbors, θi−1 and θi+1, as illustrated in Fig. 2. We refer
to the book [22] for a comprehensive treatment on Voronoi
segment.

In distributed self-triggered strategies, exact positions of the
neighbors are not always available in real-time. Consequently,
the algorithm must be able to operate on this inexact informa-
tion. The information that each robot i holds about its neighbor
j is the last known position of j , denoted by θ i

j , and the time
elapsed since the position of robot j was collected, denoted
by τ i

j . Based on this, robot i can compute the furthest distance
that j could have moved in τ i

j time as ±φi
j where

φi
j = ωmaxτ

i
j . (2)

Thus, robot i can build a prediction motion set Ri
j (θ

i
j , φ

i
j ) that

contains all the possible locations where robot j could have
moved to in τ i

j time (see Fig. 3).
In our algorithm, it is sufficient for robot i to only com-

municate with its neighbors i − 1 and i + 1. The predic-
tion motion range that robot i stores is given as Ri :=
{Ri

i−1(θ
i
i−1, φ

i
i−1),Ri

i+1(θ
i
i+1, φ

i
i+1)}.

The proposed self-triggered strategy uses these motion pre-
diction ranges Ri for defining the control law of robot i . Since
the robot has inexact information of its neighbors, the midpoint
of its Voronoi segment is a set instead of a point (see Fig. 4).

2Denote one time step as a small time interval, 	t .
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Fig. 3. Motion prediction set, Ri
j , that each robot i maintains for its

neighbors j . θ i
j is the last known position of robot j , and τ i

j is the time

elapsed since this last known position.

Fig. 4. Robot i goes toward the midpoint of its Voronoi segment via inexact
motion prediction about its neighbors.

Define

θ i
i−1,min = (

θ i
i−1 − φi

i−1

)
θ i

i−1,max = (
θ i

i−1 + φi
i−1

)

θ i
i+1,min = (

θ i
i+1 − φi

i+1

)
θ i

i+1,max = (
θ i

i+1 + φi
i+1

)
.

Thus, we have

Ri
i−1

(
θ i

i−1, φ
i
i−1

) = {
β ∈ T|θ i

i−1,min ≤ β ≤ θ i
i−1,max

}

Ri
i+1

(
θ i

i+1, φ
i
i+1

) = {
β ∈ T|θ i

i+1,min ≤ β ≤ θ i
i+1,max

}
.

Then, the minimum and maximum midpoints of robot i ’s
Voronoi segment can be computed as

V i
mid,min =

(
θ i

i−1,min + θi
)
/2 + (

θi + θ i
i+1,min

)
/2

2
(3)

V i
mid,max =

(
θ i

i−1,max + θi
)
/2 + (

θi + θ i
i+1,max

)
/2

2
. (4)

The midpoint of its Voronoi segment
V i

mid ∈ [V i
mid,min, V i

mid,max]. That is

V i
mid,min ≤ V i

mid ≤ V i
mid,max. (5)

Substituting (3) and (4) into (5) yields

θ i
i+1 + 2θi + θ i

i−1 − 2ωmaxτ
i

4
≤ V i

mid

and

V i
mid ≤ θ i

i+1 + 2θi + θ i
i−1 + 2ωmaxτ

i

4
then

−ωmaxτ
i

2
≤ V i

mid − θ i
i+1 + 2θi + θ i

i−1

4
≤ ωmaxτ

i

2
.

Therefore
∣
∣
∣
∣∣
V i

mid − θ i
i+1 + 2θi + θ i

i−1

4

∣
∣
∣
∣∣
≤ ωmaxτ

i

2
. (6)

Thus, the angular distance between V i
mid and (θ i

i+1 + 2θi +
θ i

i−1)/4. is bounded by ωmaxτ
i/2. In fact, the point (θ i

i+1 +
2θi +θ i

i−1)/4. indicates the midpoint of i ’s guaranteed Voronoi
segment gV si , defined as

gV si =
{
β ∈ T

∣
∣
∣∣max
θi ∈Si

|β − θi | ≤ min
θ j ∈S j

|β − θ j |, ∀ j �= i

}

where T1, . . . , Tn ⊂ T are a set of connected segments in T.
We refer to the report [23] for more details on the guaranteed
Voronoi segment. Thus, the guaranteed Voronoi segment of
robot i can be computed as

gV si =
{

β

∣
∣
∣
∣
∣
θi + θ i

i+1,min

2
≤ β ≤ θ i

i−1,max + θi

2

}

. (7)

Although robot i does not know the exact midpoint of its
Voronoi segment V i

mid, it can move toward the midpoint of its
guaranteed Voronoi segment gV i

mid instead, which is given by

gV i
mid =

(
θi + θ i

i+1,min

)
/2 + (

θ i
i−1,max + θi

)
/2

2

= θ i
i+1 + 2θi + θ i

i−1

4
. (8)

In general, moving toward gV i
mid does not guarantee that

the robot moves closer to the midpoint of its Voronoi segment.
However, the statement holds under the following condition.

Lemma 1: Suppose robot i moves from θi toward gV i
mid.

Let θ ′
i be its position after one time step. If |θ ′

i − gV i
mid| ≥

|V i
mid − gV i

mid|, then |θ ′
i − V ′

mid| ≤ |θi − V i
mid|.

The proof for Lemma 1 follows directly from
[11, Proof of Lemma 5.1]. Consequently, as long as
the robot can ensure that its new position θ ′

i satisfies
|θ ′

i − gV i
mid| ≥ |V i

mid − gV i
mid|, then it is assured to not

increase its distance from the actual (unknown) midpoint of
the Voronoi segment. However, the right-hand side of this
condition also is not known exactly since robot i does not
know V i

mid. Instead, we can set an upper bound on this term
using (6). We denote this upper bound by ubdi := ωmaxτ

i/2.
Thus, we get the following result.

Corollary 1: Suppose robot i moves from θi toward gV i
mid.

Let θ ′
i be its position after one time step. If

∣
∣θ ′

i − gV i
mid

∣
∣ > ubdi (9)

then |θ ′
i − V ′

mid| ≤ |θi − V i
mid|.

Next, we present a motion control law that steers
the robots toward a uniform configuration on the circle.
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Intuitively, robot i computes its guaranteed Voronoi seg-
ment (7) using the last known positions of its neighbors and
the real-time position of itself. It then computes the midpoint
of its guaranteed Voronoi segment (8) and moves toward the
midpoint until it is within ubdi of it. Formally, the control,
ui (tk), for robot i at time tk is given by

ui (tk) = ωi unit
(
gV i

mid − θi
)

(10)

where

ωi =

⎧
⎪⎪⎨

⎪⎪⎩

ωmax,
∣∣gV i

mid − θi
∣∣ ≥ ubdi +ωmax	t

0,
∣
∣gV i

mid − θi
∣
∣ ≤ ubdi∣

∣gV i
mid − θi

∣
∣ − ubdi

	t
, otherwise.

B. Triggering Policy

As time elapses, without new information, the upper bound
ubdi grows larger until the condition in (9) is not met. This
triggers the robot to collect the updated information from its
neighbors. There are two causes that may lead to the condition
in (9) being violated. The upper bound on the right-hand side,
ubdi , might grow large because of the time elapsed since the
last communication occurred. Otherwise, robot i might move
close to gV i

mid, which would require ubdi to become small by
acquiring new information. The second scenario might lead to
frequent triggering when the robots are close to convergence.
We introduce a user-defined tolerance parameter, σ ≥ 0,
to relax the triggering condition. Whenever the following
condition is violated, the robot is required to trigger new
communication:

ubdi < max
{∥∥θ ′ − gV i

mid

∥
∥, σ

}
. (11)

Furthermore, the motion control law is designed under the
assumption that the robot i and its two neighbors are located in
the counter-clockwise order. That is, θi+1 > θi > θi−1. Since
the robots are identical, it is clear that there is no advantage
gained by changing the order of robots along the circle. In a
constant strategy, since the robots always communicate, they
know the real-time position of their neighbors and can thus
avoid the order being swapped. In a self-triggered strategy,
however, we only have a motion prediction set of the neigh-
bors. If there is a possibility that this order may be violated,
the robots must communicate and avoid it. We achieve this by
requiring the robot to maintain the following condition:

θ i
i+1 − ωmaxτ

i
i+1 > θi > θ i

i−1 + ωmaxτ
i
i−1. (12)

This ensures that even in the worst case, the robots have
not swapped their positions. Whenever there is a possibility
of this condition being violated, the robot i triggers a new
communication.

The complete self-triggered midpoint strategy is presented
in Algorithm 1.

Algorithm 1 Self-Triggered Midpoint
1: while all robots have not converged:
2: for each robot i ∈ {1, ..., N} perform:
3: increment τ i

i−1 and τ i
i+1 by 	t

4: compute Ri , gV si , gV i
mid, and ubdi

5: if condition in (11) OR condition in (12) is violated:
6: trigger communication with i + 1 and i − 1
7: reset τ i

i+1 and τ i
i−1 to zero

8: recompute Ri , gV si , gV i
mid, and ubdi

9: end if
10: compute and apply ui as defined in (10)
11: end for
12: end while

C. Convergence Analysis

Algorithm 1 is guaranteed to converge asymptotically to a
uniform configuration along the circumference of the circle,
irrespective of the initial configuration, assuming that no two
robots are co-located initially. The proof for the convergence
follows directly from [11, Proof of Proposition 6.1] with
suitable modifications. In the following, we sketch these
modifications.

In [11], the robots are allowed to move anywhere in the
interior of Q ⊂ R

2, whereas in our case, the robots are
restricted to move on ∂ Q, equivalent to moving on the unit
circle T. Therefore, all the L2 distances in the proof in [11]
change to L1 distances. Instead of moving to the midpoint
of the guaranteed Voronoi segment, the robots in [11] move
to the centroid of a guaranteed Voronoi region. Instead of
communicating with the two clockwise and counter-clockwise
neighbors, the robots in [11] communicate with all possible
Voronoi neighbors. None of these changes affect the correct-
ness of the proof. We add an extra condition that triggers
communications to prevent robots from changing their order
along T. Since this condition only results in additional triggers,
it can only help convergence. Finally, since there is a one-to-
one and onto mappings between ∂ Q and T, convergence along
T implies convergence along ∂ Q.

V. PRACTICAL EXTENSIONS

In this section, we present two practical extensions of
our algorithm relaxing some of the assumptions given in
Section III.

A. Tracking of Moving Target With Noisy Measurements

If the true position of the target, o∗, is known, then we can
draw a unit circle centered at the target and use the strategy
in Algorithm 1 to converge to a uniform configuration along
the circle. According to the result in [9], this configuration
maximizes the determinant of the FIM. In practice, however,
we do not know the true position of the target. In fact, the goal
is to use the noisy measurements from the robots to estimate
the position of the target. Furthermore, the target may be
mobile. This implies that the (unknown) center of the circle is
also moving, further complicating the control strategy for the
robots.
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Fig. 5. Example of four robots moving on an arbitrary convex boundary to show (a) necessary, and (b), (c) sufficient conditions. Red solid circle: robot.

We use an EKF that estimates the position of the target
(i.e., center) and predicts its motion at every time step. The
prediction and the estimate of the target from an EKF is a
2-D Gaussian distribution parameterized by its mean, ô(k),
and covariance, �̂(k). The target’s state prediction and update
by EKF are described in the following.

Prediction:

ô−(k) = ô(k − 1)

�̂−(k) = �̂(k − 1) + R(k).

Update:

K (k) = �̂−(k)H T (k)(H (k)�̂−(k)H T (k) + Q(k))−1

ô(k) = ô−(k) + K (k)(z(k) − h(ô−(k)))

�̂(k) = (I − K (k)H (k))�̂(k)−

where R(k) and Q(k) are the covariance matrices of the
noise from target’s motion model and robot’s measurement,
respectively, h(ô−(k)) := ‖p(k) − ô−(k)‖2, z(k) denotes the
noisy distance measurement from the robot, and H (k) is the
Jacobean of h(ô−(k)). At each time step, we use the mean of
the latest estimate as the center of the circle to compute the
θi values using the transformation in (1).

In the centralized setting, a common fusion center can
obtain the measurements from all the robots and compute
a single target estimate, ô(k), at every time step. Therefore,
each robot will have the same estimated mean, ô(k), and
therefore the same center for the unit circle. However, in the
decentralized case, each robot runs its own EKF estimator
and has its own target estimate, ôi(k), based on only its own
measurements of the target. As a result, the centers of the unit
circle will not be the same, making convergence challenging.

If at any time step, a robot communicates with its neighbors,
then it can also share its estimate, mean ô(k) and covari-
ance �̂(k), with its neighbors. Therefore, at these triggered
instances, each robot can update its own estimate by fusing
the estimates from its neighbors. We use the covariance
intersection algorithm, which is a standard decentralized EKF
technique, to fuse estimates under unknown corrections [24].

The covariance intersection algorithm takes two Gaussian
beliefs, (xa,�a) and (xb,�b), and combines them into a
common belief, (xc,�c)

xc = �c((�a)
−1xa + (�b)

−1)−1xb)

�c = (λ(�a)−1 + (1 − λ)(�b)
−1)−1

where λ ∈ [0, 1] is a design parameter obtained by optimizing
some criteria, i.e., determinant or trace of �c.

The rest of the process is similar to that in Algorithm 1. The
centralized EKF scheme is a baseline that we compare against
for the more realistic decentralized strategy. The results are
presented in Section VI.

B. Limited Communication and Sensing Range

Our main result assumes that the robots have sufficiently
large communication and sensing ranges. In this section,
we first present a necessary condition for the communication
range rc and sensing range rs . We then present a sufficient
condition on the communication range for a modified version
of our algorithm.

Theorem 1 (Necessary Condition): Let N be the total
number of robots. To guarantee the convergence to the optimal
configuration when the robots do not know N , the communica-
tion range rc cannot be less than Din sin(π/N) and the sensing
range rs cannot be less than Din/2. Din indicates the diameter
of the largest radius circle contained completely inside the
environment.

Proof:
Consider an arbitrary convex boundary as shown

in Fig. 5(a). We draw its inscribed circle Cin with radius
rin and diameter Din. To guarantee convergence without
knowing N , the robots must be able to communicate with
both neighbors when they reach a uniform configuration.
When N = 4 [see Fig. 5(a)], if the communication range
among any two robots rc <

√
2rin = (

√
2Din/2), these

four robots cannot communicate with each other, even when
they are at the uniform configuration. For any N , rc can be
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calculated by using the cosine law

r2
c = 2r2

in − 2r2
in cos

2π

N
.

Thus

rc = 2rin sin
π

N
= Din sin

π

N
.

Thus, we obtain the necessary condition that rc cannot be less
than Din sin(π/N).

If rs < rin, no robot can sense the target when the target is
at the center of the circle. Thus, the sensing range rs cannot
be less than Din/2. �

Next, we propose a sufficient condition on the communica-
tion and sensing ranges to ensure convergence to the uniform
configuration. We need to make an additional assumption that
each robot can uniquely identify its forward and backward
neighbors. We also assume that the communication range is
the same for all the robots and is known to all the robots.
We present a modified version of our strategy that works with
limited communication range.

Modified Self-Triggered Strategy: If robot i cannot com-
municate with either of its two neighbors, it does not move.
If robot i can only communicate with one of its neighbors,
it moves in the direction of the other neighbor with maximum
velocity. A robot keeps moving unless its motion will cause it
to lose communication with its neighbors. If robot i can com-
municate with both of its neighbors, it applies the proposed
control law (10).

Theorem 2 (Sufficient Condition): If the communication
range rc ≥ L/N and the sensing range rs ≥ Dout, then
the modified strategy converges to the optimal configuration.
Here, L and Dout indicate the environment’s perimeter and the
length of the longest segment contained completely inside the
environment, respectively.

Proof: We define a communication chain [see Fig. 5(c)]
to be the maximal set of consecutive robots, i, i + 1, . . . , j ,
such that i can communicate with i +1, i +1 can communicate
with i + 2, and so on until j . We now show that irrespective
of the starting configuration, using the modified control law,
all the N robots will form a single chain.

We define the length of a chain to be the distance along the
boundary (in the direction that contains the chain) between
the two extreme robots in a chain [see Fig. 5(c)]. We denote
two extreme robots as the robots at the two endpoints of the
chain.

Consider a chain of K robots. We show that the robots
in this chain will keep moving unless the length is greater
than or equal to (L/N)(K − 1) or the chain merges with
another. Extreme robots in a chain have only one neighbor
with which they can communicate. According to the strategy,
these robots will continuously move (in a direction away from
the chain) with maximum velocity. Other robots between the
two extreme robots in the communication chain apply self-
triggered control law (10) to go toward the midpoint of its two
neighbors. Therefore, the length of the chain keeps increasing
as long as the robots are moving. Unless the chain merges with
another one, the robots will stop moving when the distance
between all consecutive pairs of robots is rc. Here, rc ≥ L/N .

If two consecutive robots are on the same environment edge,
then the distance along the boundary between the robots
is exactly equal to rc. If the two robots are on different
boundary edges, then the distance between the robots along
the boundary will be greater than rc (due to the convexity
of the environment). Therefore, the length of the chain when
all K robots stop moving will be greater than or equal to
(L/N)(K − 1).

Next, we prove our claim that eventually all robots form a
single chain, by contradiction. Denote the separation between
two consecutive chains as the distance between the start-
ing (ending) robot of one chain and the ending (starting)
robot of another chain along the boundary of the environ-
ment [see Fig. 5(c)]. Suppose, for contradiction, that there
exists M > 1 chains after all robots have stopped moving.
Let K1, . . . , KM be the number of robots in M chains.
K1 + · · · + KM = N .

The separation between any two consecutive chains is
strictly greater than L/N . Furthermore, the length of any chain
is greater than or equal to (L/N)(Ki − 1). The perimeter of
the environment must be equal to the length of all chains
and the separation between all consecutive chains. Therefore,
the perimeter must be strictly greater than

L

N
(K1 − 1) + · · · + L

N
(KM − 1) + M

L

N
= L .

This contradicts with the fact that the perimeter of the envi-
ronment is exactly L. Thus, we prove all the robots eventually
form a single chain.

Finally, once we ensure that robots form a single chain,
then the convergence proof follows from the convergence of
the self-triggered policy. �

VI. SIMULATION AND OUTDOOR EXPERIMENT

In this section, we evaluate the performance of the proposed
self-triggered tracking coordination algorithm. We first com-
pare the convergence time for the self-triggered and constant
communication strategies to achieve a uniform configuration
on a convex boundary (see Section IV). Then, we demonstrate
the performance of the self-triggered and constant strategies
for moving targets.

A. Stationary Target Case

In this section, we compare the performance of the self-
triggered and constant strategies in terms of their convergence
speeds and the number of communication messages to achieve
a uniform configuration on the boundary of a convex environ-
ment. Here, we focus on the base case of known, stationary
target position. All results are for 30 trials where the initial
positions of the robots are drawn uniformly at random on
the boundary. Our MATLAB implementation is also available
online.3

Fig. 6 shows snapshots of the active tracking process under
the proposed self-triggered strategy starting with the initial
configuration at time step k = 1 in Fig. 6(a) and ending in a
uniform configuration around the target at k = 760, as shown

3https://github.com/raaslab/Self-triggered-mechanism
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Fig. 6. Self-triggered tracking with six robots moving on the boundary of a convex polygon with a known, stationary target. The robots took 760 time steps
to converge to the uniform configuration around the target. (a) k = 1. (b) k = 400. (c) k = 760.

Fig. 7. Convergence time for six robots starting with same initial configu-
ration for increasing values of maximum angular velocity ωmax.

in Fig. 6(c). For this example, we assume that the robots know
the position of the stationary target. At each time step, we use
the map ϕo to find θi on the unit circle (1), compute the
control law as per Algorithm 1, and apply the inverse map ϕ−1

to compute the new positions of the robots on ∂ Q. We set
	t = 0.1 s and assume that each robot has the same maximum
angular velocity ωmax = π/180 rad/s. In general, one can
use the procedure given in the Appendix to compute ωmax
for a given environment. Note that the convergence time
depends on ωmax, which in turn depends on the shape of
the environment assuming a fixed maximum linear velocity.
In Fig. 7, we plot the convergence time for six robots starting
from a fixed configuration by varying ωmax from π/180 rad/s
to π/2 rad/s. It shows that the convergence time approaches
a limit with increasing ωmax.

We first compare the convergence time of the two strate-
gies with the same starting configurations for 30 trials
[see Fig. 8(a)]. The convergence time, Ctime, is specified as
the time step k when the convergence error, Cerr, drops below
a threshold. We use 0.1N as the threshold, where N is the
number of robots. The convergence error term, Cerr, is defined
as

Cerr =
N∑

i=1

∣
∣θi − V i

mid

∣
∣ (13)

Fig. 8. Comparison of (a) convergence time and (b) number of communica-
tion messages in constant and self-triggered strategies with a stationary target
at known position. The error bar indicates standard deviation.

in the constant communication case, and

Cerr =
N∑

i=1

∣
∣θi − gV i

mid

∣
∣ (14)

in the self-triggered case.
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Fig. 9. Gazebo environment, where six simulated Pioneer 3DX robots are
tasked to track a target moving in the interior.

Fig. 10. Comparison of (a) convergence error and (b) communication
messages in constant and self-triggered communication strategies using the
setup shown in Fig. 9.

The average number of communication messages is found
as

Com =
∑N

i=1 com(i, Ctime)

N × Ctime

Fig. 11. Convergence error for mobile target tracking in constant commu-
nication with centralized EKF, self-triggered communication with centralized
EKF, and self-triggered communication with decentralized EKF.

Fig. 12. Error in target’s estimate for mobile target tracking in constant
communication with centralized EKF, self-triggered communication with
centralized EKF, and self-triggered communication with decentralized EKF.

where com(i, Ctime) gives the total number of communica-
tions of a robot with its neighbors i at the end of Ctime.
Fig. 8(b) shows the Com in the self-triggered case. The number
of communication messages in the constant communication
case is a constant. Fig. 8(a) shows that the self-triggered mech-
anism converges comparatively with the constant strategy.

We also implemented our algorithm in Robot Operating
System (ROS) and performed simulations in the Gazebo envi-
ronment [25]. Fig. 9 shows an instance with six differential-
drive Pioneer 3DX robots [26] that can move in forward and
backward direction.

Fig. 10(a) shows that the constant communication strategy
converges faster than the self-triggered one with six simulated
robots. Changing the tolerance parameter σ affects the con-
vergence time of the self-triggered strategy. The smaller the
convergence tolerance σ , the faster the convergence, which
comes at the expense of an increased number of messages.
Fig. 10(b) shows communication messages for both strategies.
The smaller the tolerance σ , the larger the number of mes-
sages. The convergence tolerance σ acts as a tradeoff between
the communication messages and the convergence speed in the
self-triggered case.
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Fig. 13. Comparison of Cerr for mobile target tracking with constant centralized EKF and self-triggered decentralized EKF with respect to the radius and
velocities (v and ω) of the moving target. (a) r = (0.6 m/s)/(0.6 rad/s) = 1 m. (b) r = (1.0 m/s)/(0.6 rad/s)  1.67 m. (c) r = (1.0 m/s)/(0.4 rad/s) =
2.5 m. (d) r = (1.0 m/s)/(0.8 rad/s) = 1.25 m.

Fig. 14. We use five simulated robots, r1–r5, and (a) two real robots, r6 and the target, for the experiments. (b) Trajectories of all the robots and (c) the
convergence error for self-triggered communication with decentralized EKF strategy.

B. Moving Target Case

Next, we present simulation results for the realistic case
of mobile, uncertain target (see Section V). We evaluate
three strategies: constant communication with centralized EKF,
self-triggered communication with centralized EKF, and self-
triggered communication with decentralized EKF. All three
algorithms were implemented in Gazebo with six simulated
Pioneer robots and a simulated Pioneer target moving on a
circular trajectory. We assume that all the robots have the same
maximum linear velocity, vmax = 0.2 m/s. We calculate the
linear velocity for each robot i by vi = ωi‖pi − ô‖2.

For a moving target with vo = 1.0 m/s and ωo = 0.6 rad/s,
Fig. 11 shows that all three algorithms have similar tracking
performance with respect to the convergence error, Cerr,
over time. However, the target estimate error Terr is smaller
in the centralized EKF cases than the decentralized case,
as shown in Fig. 12. The target estimate error is defined as

Terr = ‖ô − o‖
for the centralized case with ô indicating the centralized
estimate of the target, and

Terr =
∑N

i=1 ‖ôi − o‖
N

for the decentralized case with ôi indicating the target estimate
from each robot i .

Fig. 13 shows the tracking performance of the self-triggered
communication decentralized EKF strategy in relation to the
baseline constant communication centralized EKF strategy as
a function of the linear and angular velocities of the target’s
motion. We observe that the performance of the self-triggered
strategy is comparable to the baseline algorithm, except when
the target moves in a large circle [see Fig. 13(c)] and when
the target moves too fast [see Fig. 13(d)].

C. Proof-of-Concept Experiment

To further verify the tracking performance of the self-
triggered decentralized EKF strategy, we also conducted a
proof-of-concept mixed reality experiment. Due to limited
resources, we used five simulated Pioneer 3DX robots
(r1 ∼ r5) cooperating with one real Pioneer 3DX robot (r6) to
track one real Pioneer 3DX target moving with vo = 1.0 m/s
and ωo = 0.6 rad/s. The initial deployment for all seven
robots is the same as Gazebo experiment (see Fig. 9). The two
real Pioneer robots (robot 6 and target) and the trajectories
of all robots during tracking are shown in Fig. 14(a) and (b).
Fig. 14(c) shows the self-triggered communication decentral-
ized EKF strategy achieves a comparable tracking performance
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Fig. 15. Computing ωmax.

with respect to the convergence error. The video showing all
the simulations and experiments is available online.4

VII. CONCLUSION AND DISCUSSION

In this paper, we investigated the problem of active target
tracking where each robot controls not only its own positions
but also decides when to communicate and exchange infor-
mation with its neighbors. We focused on a simpler target
tracking scenario, first studied in [9]. We applied a self-
triggered coordination strategy that asymptotically converges
to a uniform configuration around the target while reducing
the number of communication to less than 30% of a constant
strategy. We find that the self-triggered strategy performs
comparably with the constant communication strategy. Future
work includes extending the self-triggered strategy to decide
not only when to communicate information but also when to
obtain measurements and which robots to communicate with.
We conjecture that the latter question is crucial for better
performance while tracking mobile targets. The self-triggered
strategy can also be applied to other domains with networked
controllers, e.g., for optimization of the networked industrial
processes [27], [28].

APPENDIX

CALCULATION OF ωmax

Assume the boundary of the convex environment ∂Q and the
position (or its estimate) of the target are known. In addition,
assume that the robot has a maximum speed vmax with which it
can move on ∂Q. Thus, it can move as far as dmax = vmax	t
in one time step 	t . We assume that dmax is less than the
length of any edge of the polygon. Hence, a robot can cross
at most one vertex per time step. Then, we split the calculation
of ωmax into three separate cases (see Fig. 15).

In all cases, let E i be the edge on which the robot is
located before moving a distance of dmax. Let lE i be the line
supporting the edge. In cases 1 and 2, we compute ωmax when
the robot remains on E i after traveling dmax, whereas in case 3,
the robot goes from E i to E i+1.

Case 1: The orthogonal projection of the target on lE i lies
within E i .

4https://youtu.be/UcsRCc9cfns

ω
1,Ei
max corresponds to the case where the robot covers a

maximum angular distance with respect to the target in one
time step. Thus, the robot should be as close as possible to the
target when it moves dmax on the edge. ω

1,Ei
max can be calculated

as ω
1,Ei
max = ω

1,Ei
max/	t giving ω1

max = minEi ∈E{ω1,Ei
max }. Here,

θ
1,Ei
max is the angle shown in Fig. 15. Since we assume ∂Q

and the target’s position (or its estimate) are known, we can
calculate the length of perpendicular bisector |ph

1o|. Then,
θ

1,Ei
max can be computed by applying Pythagorean theorem for

|ph
1o| and dmax/2.
Case 2: The orthogonal projection of the target on lE i lies

outside E i .
Similar to case 1, ωmax can be computed as ω

2,Ei
max =

ω
2,Ei
max/	t , where ω2

max = minEi ∈E {ω2,Ei
max }. Here, θ

2,Ei
max is the

larger of the two angles made by the pair of lines joining target
and either of the endpoint of Ei and joining target and a point
dmax away from the corresponding endpoint. As one example
in Fig. 15, robot starts from one vertex of the ∂Q, V2, and
travels dmax distance until the ending point pe

2. Since ∂Q is
known, we know the position of its vertex V2 and can compute
the position of ending point pe

2 by knowing |V2 pe
2| = dmax

and ∂Q. Then, we can compute |pe
2o| and |V2o|. By using the

law of cosines, we can compute θ
2,Ei
max and then obtain ω

2,Ei
max .

Case 3: Robot crosses a vertex Vi within one time step.
We assume that within one time step 	t , the robot

moves dVi
1 on one edge and dVi

2 on another edge. Since the
robot must spend some time at the vertex turning in place,
we have dVi

1 + dVi
2 < dmax. We calculate d2 by

(d1 + d2)

vmax
+ θ

Vi
ro

ωro
= 	t

where θ
Vi
ro and ωro denote the rotation angle at the vertex Vi

and rotational speed of the robot, which are known. Then,
we show the calculation of θ

3,Vi
max by an example in Fig. 15,

where robot starts from ps
3, crosses the vertex by rotating θro,

and ends at pe
3. Once we know d1, d2, and θro, we can use the

law of cosines to calculate |ps
3 pe

3|. Then, by applying cosine
law again to |ps

3 pe
3|, |ps

3o|, and |pe
3o|, we can compute θ3

max.
We use this procedure to calculate θ

3,Vi
max at the vertex Vi . Thus,

the ω
3,Vi
max can be calculated as

ω3,Vi
max = θ

3,Vi
max

	t
.

Then, ω3
max can be specified as

ω3
max = min

(Vi ,d1)

{
ω3,Vi

max

}

where Vi ∈ V and 0 ≤ d1 ≤ 	t − (θ
Vi
ro /ωro).

Finally, ωmax can be computed as

ωmax = min
{
ω1

max, ω
2
max, ω

3
max

}
. (15)

If dmax is larger than the length of one edge or the sum
of lengths of several edges of the polygon, ωmax can also be
obtained using a similar procedure.
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