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Abstract— We propose a risk-aware framework for multi-
robot task assignment and planning in unknown environments.
Our motivation is disaster response and search-and-rescue
scenarios where ground vehicles must reach demand locations
as soon as possible. We consider a setting where the terrain
information is available only in the form of an aerial, georefer-
enced image. Deep learning techniques can be used for semantic
segmentation of the aerial image to create a cost map for safe
ground robot navigation. Such segmentation is typically noisy,
so we present a joint planning and perception framework that
accounts for the risk introduced due to noisy perception. Our
contributions are two-fold: (i) we show how to use Bayesian
deep learning techniques to account for risk at the perception
level; and (ii) use a risk-theoretical measure, CVaR, at the
planning and assignment level. The pipeline is theoretically
established, then empirically analyzed through simulations. We
find that accounting for risk at both levels produces quantifiably
safer paths and assignments.

I. INTRODUCTION

Many scenarios still exist where the environment that
autonomous vehicles must navigate in is unknown to them.
Such cases include search and rescue, space exploration, and
military, among many others. Consider a disaster response
scenario where ground vehicles need to supply resources
at specific demand locations as soon as possible. In such
settings, prior GPS or satellite maps of the environment may
no longer be valid. The motivating setup for our work is an
assisted planning and assignment problem involving multiple
ground vehicles to be given risk-aware paths to their assigned
tasks. It can be useful to employ multiple robots in a search
and rescue operation where it is critical to minimize risks and
maximize the utility of the vehicles as they can be helpful.

We consider finding paths for multiple vehicles to serve
multiple demand locations. The environment where the
vehicles navigate is captured by an overhead image. We
implement a deep learning technique for semantic segmen-
tation of the overhead image. Due to the uncertainty from
segmentation, the travel cost of the vehicle turns out to be
a random variable. Build on our previous work [1], our first
contribution is to show how to utilize Bayesian deep learning
techniques to handle the risk from the planning and per-
ception level. After risk-aware planning and perception, we
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generate a set of candidate paths corresponding to different
risk-levels from each vehicle’s start position to each demand
location. Our second contribution is to assign each vehicle
to a risk-aware path from its candidate path set to a demand.
By utilizing CVaR, our assignment framework provides the
flexibility to trade off between risk and reward, which builds
on our previous work [2], with risk here being assessed at
multiple levels of the algorithm.

II. PROBLEM FORMULATION

We consider the problem of finding paths for multiple
vehicles to serve multiple demand locations. In particular,
we are given N vehicles’ start positions, V = {vy, -+ ,un}
and M demand locations, D = {d;,- ,dp} in the envi-
ronment. The environment is represented by an overhead,
georeferenced, RGB image as shown in Figure. 1. The goal
is to find offline paths for each vehicle such that they
collectively serve all the demands using navigation cost
derived from the overhead images.

The cost of a path in the environment can be estimated
by first performing a semantic segmentation of the overhead
image. However, semantic segmentation is typically imper-
fect [3] and as such the estimated cost of a path may not
be accurate. The problem we address in this paper is that of
finding paths for vehicles to collectively serve all demands
under travel-cost uncertainty.

We utilize a measure, CVaR,, that explicitly takes into ac-
count the risk associated with bad scenarios [4]. Specifically,
CVaR,, measures the expectation of a random variable in the
100a—percentile worst scenarios. Here, 0 < o < 1 is a user-
defined risk-level, which provides a user with the flexibility
to choose a risk that they would like to take. Setting o = 1
makes CVaR,, equal to the expectation whereas CVaR,, ~ 0
is akin to worst-case optimization.

We are motivated by tasks that are urgent and time-critical,
such as fighting fires [5] and delivering medical supplies
in emergencies [6]. When the number of vehicles is more
than the demands, assigning multiple redundant vehicles to
demands helps counter the effect of uncertainty [7]. When
travel times are uncertain, as in this work, the arrival time of
the earliest vehicle itself is a random variable. The goal is to
assign vehicles to demand locations and find corresponding
paths for the vehicles from the start to the assigned demand
locations.

For convenience, we convert the minimization problem
into a maximization one by taking the reciprocal of the travel
cost. Specifically, we use the travel efficiency, the reciprocal
of travel cost, as the measure. The overall travel efficiency,
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Fig. 1. The breakdown of the algorithm’s parts. Given an overhead image
input, the algorithm provides a semantic segmentation (and uncertainty
map), then generates candidate paths, and finally performs the risk-aware
assignment of vehicles to paths.

denoted by f is the sum of the travel efficiencies of all
demand locations. Notably, f is also a random variable.
Our goal is to find risk-aware paths from vehicles’ start
positions to demand locations given a user-defined risk level
o. We formulate a risk-aware path finding problem by
maximizing CVaR, on the travel efficiency (Problem 1).

Problem 1 (Risk-Aware Path Finding)
max CVaRa[f(S,y)] (D

where S is a path set for vehicles with “per path per vehicle”,
X is a ground set of paths from which § is chosen, and
f(S,y) is the travel efficiency on the path set S, with
randomness induced by y.

III. ALGORITHM AND ANALYSIS

The algorithm we propose consists of three main parts:
semantic segmentation, candidate path generation, and risk-
ware assignment. The overall pipeline of the framework and
its parts are shown in Figure 1.

The inputs to the algorithm are a single overhead aerial
two-dimensional image, vehicles’ start positions and demand
locations, The output is a risk-aware assignment of paths
from vehicles’ start positions to demand locations. The input
is first semantically segmented into per pixel labels. These
labels are assigned a cost proportionate to the risk involved in
traversing them. The cost map and the uncertainty associated
with the segmentation are then used as input to a path planner
which generates candidate paths for assignment. Finally,
the candidate paths from each vehicle’s start position to
each demand location are computed by maximizing CVaR
(Problem 1), for risk-aware path assignment.

IV. SIMULATIONS

We consider assigning N = 3 supply vehicles to M = 2
demand locations in a 2D environment, which is represented
by an overhead image (Fig. 1). By path generation technique,
each vehicle has K = 3 candidate paths from its start
position to each demand location.

Due to the imperfectness of semantic segmentation, the
efficiency of the path is a random variable. We show the
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Fig. 2.  Efficiency distributions of paths and the path assignment when
« = 0.01. The assigned path for each robot is marked in red.

200 P 0 w0
§ 150 2 w
50 50 w - =
100 100 10 . o0
0 P 0 i, | = 0
3 o o o LT o - -
% w0 % ERCHE] w w0 % © w0 % » W %0 0 w0 %
d, v dy, v, di, vy, e by, vi. pr da, v, 2 d, v, p
a0 Y w0 .
20 90 [ ey
.| s [ I3 [ [ &= L1 - -
150 Ll 400 300
100 w0 200 200
10 20
50 50 _I l 100 I_| 100
o o o TSN - doe n.
0 40 5 W 40 5 0 4w s % 0 s ERE)
di, v, py di, v, ps &, v, py ds, v, Py
0 a0 w0 .
| C I o0 [ =

0
2 40 s

o @ s

EICEED 2 40 %0

(a) Demand location dj (b) Demand location da
Fig. 3.  Efficiency distributions of paths and the path assignment when
«a = 1. The assigned path for each robot is marked in red.

efficiency distributions of the paths from vehicles’ start
positions to demand locations in Figure 2 and Figure 3.

We use SGA [2] to assign each vehicle a path to a
demand location. For example, in Figure 2-(a), vehicle’s vs
is assigned path ps for demand location d;. In contrast, when
the risk level is high, e.g., & = 1, the assignment is more
adventurous, since the paths with a larger mean and a larger
variance are selected. As shown in Figure 3-(a), vehicle’s
vs switches to path ps for demand location d;. Thus, the
risk level, o, provides a user with the flexibility to trade off
between risk and total efficiency (reward).
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