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Abstract— We study a distributed resilient submodular max-
imization problem in which a group of robots collaboratively
choose a strategy set. The global objective is to maximize a
submodular function on the strategy set with the existence of
a known number of robot attacks or failures. When choosing
a strategy, each robot communicates with other robots within
a local group, due to its limited communication ability. For
such problem, we propose a distributed resilient submodular
maximization algorithm that takes into account both the limited
information available for the robots and the attacks or failures.
In particular, our algorithm guarantees an approximation
performance that is within a constant factor of the optimal
strategy. Our analysis resorts to the curvature of the submod-
ular set function, and proves that the algorithm is scalable,
runs in polynomial time and is faster than its centralized
communication manner. We demonstrate the efficacy of our
algorithm through both Matlab and Gazebo simulation with a
multi-robot target tracking scenario.

I. INTRODUCTION

Resiliency is a hot topic across both academia [1], [2],
[3] and industry [4], [5], [6]. With resiliency, we take the
view that cyber attacks are unavoidable. As such, some
part of the system is likely to be compromised. What we
would like is to ensure the overall system continues to
perform at an acceptable level despite these compromised
assets. Motivated by this goal, researchers have developed
algorithms for improving the resiliency of the system in a
variety of areas such as smart grid and power systems [1],
[7], IT data and infrastructure protection [5], [6], medical
monitoring [8], control systems [2], [9] and robotics [3], [10].
Typical examples include:
• (Power system) How to maintain the acceptable levels

of operation for a power generator in the face of sudden
faults or attacks [7]?

• (Medical monitoring) How to acquire accurate detection
of medical conditions subject to external perturbations
and internal faults [8]?

• (Estimation and control) How to reconstruct the state
of the linear system and stabilize it in the presence of
sensor or actuator attacks [2]?

In this paper, we focus on the resiliency in multi-robot
systems where robots interact locally with their nearest
neighbors to collaboratively achieve certain goals against
attacks or failures 1. For example, Saulnier, et al. proposed
a distributed resilient formation control approach to achieve
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1Henceforth, we refer to “attack” and “failure” interchangeably.

the flocking behavior of multiple robots in the presence of
defective or malicious robots [3]. Similarly, when some of
the robots are non-cooperative, Saldana, et al. provided a
distributed resilient strategy to steer the robots to achieve
consensus with time-varying communication graphs [11].
Following this line, Guerrero-Bonilla, et al. presented suffi-
cient conditions to guarantee resilient consensus on triangular
and square lattices by studying the robot communication
range [12].

Unlike the goal to achieve desired formations of robots, we
are interested in maximizing a common objective function
defined on the strategy set collaboratively selected by the
robots. Examples of the objective function can be the joint
area covered by the robots/sensors in the environment [13]
and the total number of targets detected by the robots at
a prescribed time [14], [10]. This kind of objective function
usually turns out to be a submodular function. Submodularity
indicates a function with the property of diminishing returns.
Many information-based measures, such as entropy and
mutual information [13], and geometric measures such as
the visibility area [15], are known to be submodular. Max-
imizing the submodular function is generally NP-complete.
However, a simple greedy algorithm yields a constant-factor
approximation guarantee by selecting a strategy with the
maximum marginal contribution to the function value in each
round [16], [17].

We take into account the similar settings of attacks and
the distributed communication manner as presented in the
multi-robot formation studies [3], [11], [12]. In particular,
we consider that robots can fail or its sensors can get
attacked [18], and the robot has the limited sensing and
communication range so that it can make decisions based
on the local information only [19], [20]. In fact, when there
exists a given number of worst-case attacks, the standard
greedy algorithm loses its approximation guarantee and can
do arbitrarily bad [21]. Besides, if only local information is
provided, the standard greedy algorithm cannot be directly
implemented since it requires the decisions from the entire
network [19], [20]. Thus, in this paper, we tend to address
a submodular maximization problem with both distributed
communication and robot failures.

Related work. (Resilient submodular maximization)
Tzoumas, et al. proposed a resilient submodular maximiza-
tion algorithm by combining an oblivious approach (“select
strategy with the largest contribution without considering the
redundancy”) with the standard greedy algorithm [22], [21].
They show the resilient algorithm has a provable perfor-
mance guarantee (close to optimal) to play against a given



number of worst-case attacks, and it runs as fast as the stan-
dard greedy algorithm. Building on this work, Schlotfeldt, et
al. extended the resilient submodular maximization algorithm
to the multi-robot information gathering [23] and we studied
a resilient multi-robot target tracking problem [10].

(Distributed submodular maximization) When only local
information is available, Gharesifard and Smith proposed a
distributed submodular maximization approach where each
agent sequentially takes a greedy action based on the de-
cisions from its previous neighbors [19]. They show this
sequential greedy approach achieves a constant-factor ap-
proximation guarantee that is the same as that of the stan-
dard greedy algorithm with global/centralized information.
Following this line, Grimsman, et al. improved the approx-
imation performance of the sequential greedy algorithm by
studying the structure of the communication graph [20]. In
these two works, even though agents make decisions by only
considering the decisions from their previous neighbors, they
need to perform sequentially, which makes the algorithm
inefficient when the number of robots is large. Another
branch for solving distributed submodular maximization is
to deal with large-scale machine learning problems which
require selecting a representative subset out of a massive data
set. For finding the representative subset, Mirzasoleiman, et
al. proposed a two-stage greedy algorithm [24]. In the first
stage, they partition the massive data into many small subsets
and then run a standard greedy algorithm on these subsets
in parallel to obtain a local solution on each subset. In the
second stage, they collect these local solutions and run the
standard greedy algorithm again on a central processor to
select out the representative subset. They show this two-stage
greedy approach has a provable performance guarantee and
performs efficiently on the sparse Gaussian process inference
and exemplar-based clustering with tens of millions of data
points.

In this paper, we handle these two challenges i.e., attacks
and local communication, simultaneously in a submodu-
lar maximization problem where a group of robots makes
collaborative decisions. The robots can only communicate
locally due to the limited communication range. They col-
laboratively select a set of strategies to maximize a common
submodular objective function against a known number of
the worst-case attacks. Inspired by the “partition” stage of
the distributed greedy approach in [24], we let each robot
first identify a local unique group it belongs to based on the
limited communication range. In this way, the whole robot
network can be partitioned into smaller separated subgroups.
Then the robots within the same subgroup collaboratively
take a resilient approach to play against the worst-case
attacks [21], [10], ignoring the strategies from other groups.
With this approach, all cliques of robots can perform in
parallel.

Contributions. We make the following contributions:
• (Problem) We formalize the problem of distributed

resilient submodular maximization against the worst-
case attacks by communicating within the local group
only.

• (Solution) We propose the first algorithm for such
problem, and prove it has the following properties:

– provable approximation performance: the algo-
rithm ensures a constant-factor approximation per-
formance of the optimal for any objective function
that is monotone and submodular;

– minimal running time: the algorithm is scalable
and runs in polynomial-time. It is faster than the
centralized communication, especially when the
communication graph is sparse;

• (Empirical Evaluation) We illustrate the performance
for resilient target tracking against robot attacks, and
the efficacy of our approach through both Matlab and
Gazebo simulations.

Overall, in this paper we go beyond the centralized re-
silient submodular maximization [22], [21], [23], [10] by
proposing the distributed submodular maximization; and go
beyond the distributed submodular maximization [24], [19],
[20] by proposing the resilient submodular maximization.

Organization of rest of the paper. We formulate a
distributed resilient submodular maximization problem in
Section II. We present a distributed resilient submodular
maximization algorithm in Section III along with the analysis
of its approximation ratio and computational complexity in
Section IV. We illustrate the performance of the proposed
algorithm by Matlab and Gazebo simulations in Section V.
We conclude the paper in Section VI.

Notations: Given a set A, 2A denotes its power set; |A|
denotes A’s cardinality; given another set B, the set A \ B
denotes the set of elements in A that are not in B. A complete
graph is a simple undirected graph in which every pair of
distinct vertices is connected by a unique edge. A clique in
graph G is a subgraph of G that is complete. Denote K(G)
as the number of the non-overlapping cliques in graph G.
Denote ω(G) as the clique number of graph G, which is the
number of vertices in the largest clique in graph G.

II. PROBLEM FORMULATION

In this section, we propose a distributed resilient submod-
ular maximization problem. We are given N robots on a
communication graph G with nodes R = {1, · · · , N}. Each
robot i ∈ R has a candidate strategy set Xi. The robot
must choose one strategy (action) si ∈ Xi, which follows
a partition matroidal constraint [17]. We assume the number
of candidate strategies for each robot i, |Xi| = D, i ∈ R.
We define a ground set of strategies X =

⋃
i Xi and are

given a normalized, monotone (increasing) and submodular
function, f : 2X → R≥0. The function value of a strategy
si is f({si}) and its shorthand, f(si). With a slight abuse
of notation, we denote the set of robots with strategy set
S =

⋃
i si as R(S) and denote the strategy set for a set of

robots C as X (C). Evidently, R = R(X ) and X = X (R).
We consider robots choosing their strategies in a dis-

tributed communication manner. The robots can only com-
municate and share strategies within the same local group.
We call this local group as the clique of robots on the graph



G. And there is no communication allowed (or required)
between cliques. We assume there exists a known number
of the worst-case attacks to the whole robot team. We also
assume that the number of attacks is less than the number of
total robots. Each clique only knows the total number of the
attacks and has no idea of how these attacks are distributed
among cliques. The objective is to maximize a submodular
function defined on the strategy set selected by each robot
against the worst-case attacks. We propose the problem as
below:

Problem 1 (Distributed Resilient Submodular Maximiza-
tion).

max
S⊆V,|S|≤N

min
A⊆S,|A|≤α

f(S \ A) :

|S ∩ Xi| = 1, ∀i ∈ R;
S = S1 ∪ · · · ∪ SK(G), |Sk| ≤ nk;

n1 + · · ·+ nK(G) = N ;

|A| ≤ α, α < N,

(1)

where |S ∩ Xi| = 1 denotes a partition matroid constraint
that each robot i must choose one strategy from its strategy
set Xi. S is the decision set selected by all the cliques
of robots. Sk and nk are the strategy set and the number
of robots in each clique k, k ∈ {1, · · · ,K(G)}. A denotes
attack set from the selected set S. The constraint |A| ≤ α
captures the problem assumption that at most α robots in
the network can fail or get attacked.

Problem 1 can be interpreted as a two-stage perfect
information sequential game [25, Chapter 4] between K(G)
cliques on graph G and an attacker. The cliques first work
in parallel to select out a strategy set S to maximize the
objective function value. The strategy set S is the union
on the strategy set Sk from each clique. By observing the
strategy set S, the attacker then executes a worst-case attack
A from S to minimize the objective function value.

III. ALGORITHM

We present our main algorithm for solving Problem 1 in
Algorithm 1. Since we assume that robots select strategies
based on the information within the same clique, we first
introduce related approaches to partition the communication
graph into separated subgroups.

A. Clique Cover

We assume each robot has a limited communication
range and can communicate with other robots within its
communication range. We set the communication ranges of
all the robots to be equal. Then the underlying communi-
cation topology of the robots is an undirected communica-
tion graph. Given this communication setup, we propose a
distributed algorithm to partition the robot communication
graph into separated cliques (in the appendix). Notably,
this clique partition problem is also called “non-overlapping
clique cover” in the literature, which is NP-hard even for a
centralized solution [26]. Thus, we assume for a stationary
communication graph, each robot knows its unique clique.

Fig. 1. A graph G contains 10 robots and 4 cliques.

If the communication is dynamic, each robot can identify its
unique clique by our distributed clique cover algorithm or
other related algorithms. After each robot identifies its unique
clique, the robots together formulate an undirected commu-
nication graph G with non-overlapping cliques. We show
an example of the communication network in Fig. 1 where
graph G contains 10 robots and 4 cliques, C1(G), · · · , C4(G).
Notably, a clique can have a single robot, say C2(G).

B. Distributed Resilient Submodular Maximization Algo-
rithm

We then describe our distributed resilient submodular
maximization algorithm for solving Problem 1 in Algo-
rithm 1.

After the non-overlapping clique cover, all cliques of
robots work in parallel to perform against the attacks (Alg 1,
line 2). Notably, each clique of robots only knows the total
number of attacks, α for the whole robot network G. It does
not know how α attacks are distributed among the cliques.
Thus, each clique conjectures the worst-case scenario and
makes the most conservative guessing. That is, each clique
Ci(G) considers the number of attacks as α in it.

1) If the number of attacks α is less than its size (Alg. 1,
line 3), it sets the number of attacks as α. Then a
resilient algorithm is executed in two steps. First, the
clique sequentially constructs a local oblivious set Sok
by adding one strategy at a time from X (Ck(G)) to Sok
(Alg. 1, lines 4-9). Specifically, Sok is constructed such
that it satisfies both the attack cardinality constraint
(line 4) and the “one strategy per robot” constraint
(line 6). Also, Sok is constructed such that each strategy
s ∈ X (Ck(G)) added in Sok achieves the highest value
of f(s) among all the strategies in X (Ck(G)) that
have not been yet added in Sok and can be added in
Sok (Alg. 1, lines 4-7). Second, the remaining robots,
Ck(G)\R(Sok) whose strategies are not selected in the
local oblivious set Sok sequentially construct a local
greedy set, Sgk (Alg. 1, lines 10-15). Sgk is constructed
by picking greedily a strategy from X (Ck(G)\R(Sok))
at a time such that it satisfies “one strategy per robot”
constraint (Alg. 1, line 12). Also, Sgk is constructed
such that each strategy s ∈ X (Ck(G)\R(Sok)) added in
Sgk achieves the highest marginal contribution f(Sgk ∪
{y}) − f(Sgk) among all the strategies in X (Ck(G) \
R(Sok)) that have not been yet added in Sgk and can
be added in Sgk (Alg. 1, lines 10-13).

2) If the number of attacks is larger than the clique’s
size (Alg. 1, line 16), the clique sets the number of



Algorithm 1: Distributed Resilient Submodular Maxi-
mization

Input: • set of robots R
• robot decision set Xi, ∀i ∈ R
• objective function f
• number of attacks α

Output: robots’ strategy set S
1: Sk ← ∅; Sok ← ∅; S

g
k ← ∅; k = {1, · · · K(G)}

2: for each clique Ck(G) do
3: if α < |Ck(G)|
4: while |Sok | < α do
5: s ∈ argmaxy∈X (Ck(G)) f(y)
6: if |(Sok ∪ {s}) ∩ Xi| = 1, ∀i ∈ Ck(G)
7: Sok ← Sok ∪ {s}
8: end if
9: end while

10: while |Sgk | < |Ck(G) \ R(Sok)| do
11: s ∈ argmaxy∈X (Ck(G)\R(So

k))

f(Sgk ∪ {y})− f(S
g
k)

12: if |(Sgk ∪ {s}) ∩ Xi| = 1, ∀i ∈ (Ck(G) \ R(Sok)
13: Sgk ← S

g
k ∪ {s}

14: end if
15: end while
16: else
17: while |Sok | < |Ck(G)| do
18: s ∈ argmaxy∈X (Ck(G)) f(y)
19: if |(Sok ∪ {s}) ∩ Xi| = 1, ∀i ∈ Ck(G)
20: Sok ← Sok ∪ {s}
21: end if
22: end while
23: Sgk ← ∅
24: end if
25: Sk = Sok ∪ S

g
k

26: end for
27: S =

⋃K(G)
k=1 Sk

attacks as its size. Similarly, the clique constructs a
local oblivious set Sok with cardinality as its size and
satisfying “one strategy per robot” constraint (Alg. 1,
lines 17-22). Evidently, there are no remaining robots
whose strategies have not been selected in Sok . Thus,
the local greedy set Sgk is set to be empty (Alg. 1,
line 23).

3) The strategy set in this clique is the union set of the
local oblivious set and the local greedy set (Alg. 1,
line 25).

Overall, the strategy set selected by all the robots i ∈ R is
the union set of the strategy sets from all the cliques (Alg. 1,
line 27).

IV. PERFORMANCE ANALYSIS

We quantify the performance of Algorithm 1, by bounding
its approximation ratio and the running time. We describe the
approximation performance by using the curvature νf (I) of

Fig. 2. Subgraph G2.

the submodular function f , the global oblivious set and a
subgraph of graph G.
Curvature [27]: consider a matroid I for ground X , and a
non-decreasing submodular set function f : 2X 7→ R such
that (without loss of generality) for any element s ∈ X ,
f(s) 6= 0. The curvature measures how far f is from
submodularity or linearity. Define curvature of f over the
matroid I as:

νf (I) , 1− min
s∈S,S∈I

f(S)− f(S \ {s})
f(s)

. (2)

Note that the definition of curvature νf (I) (Eq. 2) implies
that 0 ≤ νf (I) ≤ 1. Specifically, if νf (I) = 0, it means
for all the feasible sets S ∈ X , f(S) =

∑
s∈S f(s). In this

case, f is a modular function. In contrast, if νf (I) = 1, then
there exist a feasible S ∈ I and an element s ∈ X such that
f(S) = f(S \ {s}). In this case, the element s is redundant
for the contribution of the value of f given the set S \ {s}.
Global oblivious set and subgraph G2: Similarly to the
construction of the local oblivious set on each clique in
Section III, we define the global oblivious set, So on graph
G as follows. So satisfies the attack cardinality constraint,
i.e., |So| = α. Also, So is constructed sequentially such that
each strategy s ∈ X (R) added in So per round achieves the
highest value of f(s) among all the strategies in X (R) and
follows “one strategy per robot” constraint.

Then we define a subgraph of G as G2. The nodes of
G2 are the robots whose strategies are not selected in the
global oblivious set, i.e., R \ R(So). The communication
links among the robots in G2 are the same as that existed in
graph G. We give an example of subgraph G2 in Fig. 2. We
assume the number of attacks α = 2 on graph G (Fig. 1)
and the global oblivious set So (with |So| = 2) contains
one strategy from robot 4 and one strategy from robot 5.
Then the remaining robots formulate the subgraph G2 with
the same communication links among these robots in graph
G. Evidently, G2 has N −α robots if graph G has N robots,
and has less or equal number of cliques than G does.

Notably, each clique does not know either the global
oblivious set So or subgraph G2, since it has no idea of
f(s) from other cliques.

Next, we present the performance of Algorithm 1.

Theorem 1 (Performance of Algorithm 1). Consider
Problem 1, the notation therein, the notation in Algorithm 1,
and the definitions:

• let f? be the optimal value to Problem 1;



• given a set S as solution to Problem 1, let A?(S) be
a worst-case set removal from S, that is: A?(S) ∈
arg min

A⊆S,|A(S)|≤α
f(S \A). Evidently, a removal from

S corresponds to a set of robot/sensor attacks;
The performance of Algorithm 1 is bounded as follows:
1) (Approximation performance) Algorithm 1 returns a

strategy set S such that each robot selects a decision
strategy (partition matroid constraint I), and
If K(G) = 1,

f(S \ A?(S))
f?

≥ 1

2
max[1− νf (I),

1

(α+ 1)
,

1

(N − α)
]

(3)
Else, K(G) ≥ 2,

f(S \ A?(S))
f?

≥max[
1− νf (I)

2
,

1

(α+ 1)K(G2)ω(G2)
,

1

(N − α)K(G2)ω(G2)
] (4)

where K(G) and K(G2) are the number of non-
overlapping cliques in graph G and its subgraph G2,
respectively. ω(G2) is the clique number of subgraph
G2.

2) (Running time) Algorithm 1 runs in O(ω2(G)D2) time.
ω(G) is the clique number of graph G and D is the
number of candidate strategies for each robot.

The proof of Theorem 1 is the appendix.
Approximation performance. The approximation ratio in

Theorem 1 implies Algorithm 1 has the same approximation
performance as the centralized submodular maximization
algorithm [10, Algorithm 1] when the graph G only has one
clique. This is because, in this extreme case, the distributed
communication turns out to be a centralized communication
if all robots communicate within a single clique. When
graph G has more than one clique, the approximation ratio
of Algorithm 1 depends on the number of non-overlapping
cliques and the clique number of its subgraph G2.

Running time. Theorem 1 implies that the running time
of Algorithm 1 is quadratic in the clique number of graph G
and the number of robot’s candidate strategies. Notably, the
centralized resilient algorithm runs in O(N2D2) time [10].
We know the clique number of graph G is less than the total
number of robots N when the graph has more than one clique
(not in the extreme case). Thus, Algorithm 1 runs faster than
the centralized resilient algorithm as long as K(G) 6= 1.

V. SIMULATION

We verify the performances of the proposed algorithms
by a multi-robot target tracking scenario as presented in [14],
[10] where each robot must choose one trajectory from its
candidate trajectory set to track targets. We present both
Matlab and Gazebo evaluations of our algorithm that demon-
strate the performance and the strength of our approach. Our
Matlab and Gazebo implementations are available online2.

2https://github.com/raaslab/distributed_
resilient_target_tracking.git

Fig. 3. Matlab simulation setup: Each robot i ∈ R (quadrotor model) has 4
possible trajectories (forward, backward, left, and right). The tracking region
of each trajectory is rectangular and has the same dimensions across all 4
trajectories. We denote the tracking regions for the forward, backward, left,
and right trajectories as C(τ↑i ), C(τ

↓
i ), C(τ

←
i ) and C(τ→i ) respectively; in

particular, the lengths lt and lo denote the dimension of each rectangular
tracking region; and lf denotes the fly length for the robot. We set lt =
lf + lo as the robot’s tracking length. The red pentagrams indicate the
targets.

Compared algorithms. We compare our distributed re-
silient algorithm (Alg. 1) with two other algorithms. The
algorithms differ in the communication protocol and how
robots make decisions. The first algorithm is a centralized
resilient algorithm, proposed in our recent work [10] where a
central server communicates with all the robots and considers
the worst-case robotic/sensor attack. Evidently, this algo-
rithm is a baseline algorithm. The second algorithm is the
centralized greedy algorithm. It has the same communication
manner as the centralized resilient algorithm, that is, all
robots can share strategies with a central server. The central
server makes decisions greedily for the robots and ignores
the robotic/sensor attack as proposed in [14].

Performance Sketch. The evaluations and comparisons
demonstrate: (i) Algorithm 1 performs close to the central-
ized resilient algorithm [10]. (ii), Algorithm 1 is superior to
the centralized greedy algorithm. (iii), Algorithm 1 takes less
running time than the centralized resilient algorithm and the
centralized greedy algorithm.

A. Matlab evaluation over one time step with static targets

We study the effect of the number of robots and of the
communication range by running the algorithms over random
instances of Problem 1 for a single round (one step time
horizon).

Simulation setup. We consider 60 targets and a number
of robots varying from 10 to 20. We set the number of
attacks as 3, 4 and 8. A top view of robots and targets
is shown in Fig. 3. We assume each robot moves on a
fixed plane and has four candidate trajectories (strategies):
forward, backward, left and right. Each robot has a square
filed-of-view lo × lo. Once a robot picks a trajectory, it flies
a distance lf along that trajectory. Thus, each trajectory has
a rectangular tracking region with length lt = lf + lo and
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(a) 10 robots with rc = 70
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(b) 20 robots with rc = 30

Fig. 4. Matlab evaluation of distributed non-overlapping clique formulation
(Algorithm 2) with different number of robots and different communication
ranges. The red dot indicates the robot. The line between two robots
indicates a communication link.

width lo. We set lt = 10 and lo = 3 for all the robots.
We randomly generate the positions of the robots and the
targets in the 2D space [0, 100] × [0, 100] ∈ R2 across 30
trials for each number of robots from 10 to 20. We assume
robots have available estimates of targets’ positions. For each
trial, all three algorithms, Algorithm 1, centralized resilient
algorithm [10] and centralized greedy algorithm [14], are
executed with the same initialization, i.e., the same positions
of robots and targets. Notably, for the centralized resilient
algorithm and the centralized greedy algorithm, a central
server chooses trajectories for all the robots. For Algorithm 1,
it starts with four different communication ranges, rc =
30, 50, 70 and 90. We assume each robot identifies its unique
clique by the proposed clique cover approach or other clique
cover algorithms based on the communication range. Then,
each robot chooses one of its candidate trajectories by
communicating with other robots in the same clique. All
algorithms are performed for one round in each trial.

We first arbitrarily pick two trials with a varying number
of robots and varying communication ranges to visualize the
performance of the proposed clique cover approach in Fig-
ure 4. In these two trials, robots formulate non-overlapping
cliques by communicating with neighbors only.

We examine the performance of three algorithms by the
remaining tracked targets after the worst-case attack and the
running time with a varying number of robots, a varying
number of attacks and varying communication ranges in
Fig. 5 Fig. 6. We also show the number of cliques K(G)
and the clique number ω(G) to get a sense of the property
of graph G in Fig. 7.

Results. The comparisons are reported in Fig. 5 and Fig. 6
with the number of attacks, α = 3, 4 and 8 and with rc =
30, 50, 70 and 90. The following observations from Fig. 5
and Fig. 6 are due:

a) Close-to-centralized communication of Algorithm 1:
Fig. 5 shows that the number of targets tracked by Algo-
rithm 1 is close to that of the centralized resilient algorithm.
In particular, when the communication range is 90, Algo-
rithm 1 works comparatively to the centralized resilient algo-
rithm (Fig. 5-(d)). This is because, when the communication

range is large, the communication graph G becomes dense,
as shown in Fig 7-(d) where graph G has around 2 cliques
and its clique number is over 8. Thus, Algorithm 1 performs
comparatively to the centralized resilient algorithm.

b) Superior-to-centralized greedy algorithm: Fig. 5-(b), (c)
& (d) shows Algorithm 1 performs better than the centralized
greedy algorithm in terms of the number of targets tracked.
Even when the communication range is 30 (the graph G is
sparse with more cliques and a smaller clique number as
shown in Fig 7-(a)), Algorithm 1 outperforms the centralized
greedy algorithm when the number of robots is larger than
13 (Fig. 5-(a)).

c) Superior-to-centralized algorithms in the computational
time: Fig. 6 shows Algorithm 1 runs faster than two central-
ized communication algorithms. Because, in Algorithm 1,
robots select trajectories within each clique in parallel. While
in the centralized communication algorithms, a central server
evaluates the strategy sets from all robots in the network and
schedules trajectories for them, and thus takes more time.

B. Gazebo evaluation over multiple steps with mobile targets

We verify the performance of Algorithm 1 by running
the algorithms across multiple time steps. We consider the
kinematics and dynamics of the robots, the sensing noise,
and the actual trajectories of the targets.

Simulation setup. We consider a scenario where 10 aerial
robots are tasked to track 50 ground mobile targets (Fig. 8-
(a)). We set the number of attacks α equal to 4 and set
the communication range for robots as rc = 5 units in the
gazebo environment. Notably, we only consider 2D [x, y]
coordinates for robots to identify neighbors by using the
communication range. We also visualize the robots, their
field-of-view, the cliques, and the targets using the Rviz
environment (Fig. 8-(b)): in particular, we visualize the
robots as spherical markers, their field-of-views as colored
squares. For a group of robots belonging to the same clique,
we set the same color for them, so as their field-of-view.
Similarly to the Matlab simulation setting, each robot has 4
trajectories (forward, backward, left, and right), and flies on
a different fixed plane (to avoid collision with other robots).
Moreover, we set the tracking length lt = 6 and tracking
width lo = 3 for all robots. We assume robots can obtain
noisy position measurements of the targets, and then use a
Kalman filter for estimate updating.

We compare the performance of Algorithm 1 with the
centralized resilient algorithm [10] and the centralized greedy
algorithm [14]. For each algorithm, at each time step, each
robot picks one of its 4 candidate trajectories. Then all robots
fly a lf = 3 distance along the selected trajectory. If an attack
happens, we assume the attacked robot’s tracking sensor (e.g,
camera) is blocked; nevertheless, we assume that it can be
active again at the next time step, so that at each round the
worst-case set of α robots is considered attacked. We repeat
this process for 50-time steps.

We capture the performance of each algorithm with the
expected number of targets tracked and the computational
time for all time steps. We compare the algorithms with



(a) α = 3 and rc = 30 (b) α = 4 and rc = 50 (c) α = 4 and rc = 70 (d) α = 8 and rc = 90

Fig. 5. Matlab evaluations: Permanence comparison of Algorithm 1 with the centralized resilient algorithm and the centralized greedy algorithm by the
number of tracked targets with three different number of attacks, α = 3, 4 and 8, and four different communication ranges rc = 30, 50, 70 and 90.

(a) α = 3 and rc = 30 (b) α = 4 and rc = 50 (c) α = 4 and rc = 70 (d) α = 8 and rc = 90

Fig. 6. Matlab evaluations: Permanence comparison of Algorithm 1 with the centralized resilient algorithm and the centralized greedy algorithm by the
running time with three different number of attacks, α = 3, 4 and 8, and four different communication ranges rc = 30, 50, 70 and 90.

(a) rc = 30 (b) rc = 50 (c) rc = 70 (d) rc = 90

Fig. 7. Matlab evaluations: Visualization of the number of cliques and the clique number on graph G with four different communication ranges
rc = 30, 50, 70 and 90.

respect to the average and the standard deviation of these
two performance indexes. A video for this implementation
is available online3.

Results. The comparison results are reported in Fig. 9.
The following observations from Fig. 9 are due:

a) Close-to-centralized communication of Algorithm 1 and
better than the centralized greedy algorithm: Fig. 9-(a) shows
that the number of targets tracked by Algorithm 1 is close to
that of the centralized resilient algorithm, and is larger than
that of the centralized greedy algorithm when the number of
cliques and clique number of graph G are 3 and 5 on average

3https://youtu.be/cGCUErXESZ0

(Fig. 9-(c)).
b) Superior-to-centralized algorithms in the running time:

Fig. 9-(b) shows Algorithm 1 runs faster than two centralized
communication algorithms when the number of cliques and
clique number of graph G are 3 and 5 on average (Fig. 9-(c)).

All in all, in the above simulations, Algorithm 1 achieves
a close-to-centralized communication performance and runs
faster.

VI. CONCLUSION

We studied a submodular maximization problem where a
group of decision makers with a limited communication abil-
ity, collaboratively select strategies to maximize a common



(a) Gazebo environment (b) Rviz environment

Fig. 8. Gazebo simulation setup: 10 aerial robots and 50 ground mobile
targets: (a) Gazebo environment; and (b) Rviz environment, where: each
aerial robot is color-coded, and its coverage region is depicted with the
same color. The robots in the same clique are depicted with the same color.
The communication range rc is set as 5 units in the gazebo environment.
The targets are depicted as white cylindrical markers.

objective function against a known number of the worst-case
attacks. We proposed a distributed resilient algorithm that
has a provable performance guarantee and runs efficiently
in polynomial time for such problem. We demonstrated the
performance of our algorithm by implementing a multi-robot
target tracking scenario in both Matlab and Gazebo simu-
lations. Notably, the results of this paper can be extended
to any other submodular maximization applications involved
with a group of decision makers with limited information to
play against attacks.

By confining the communication within each unique
clique, we sometimes weaken the communication ability
of the robot, since some robot may have neighbors in
other cliques whom it can communicate with. Thus, our
first ongoing work is to improve the proposed distributed
approach by making the robot select strategy based on the
decisions from all its neighbors, similarly to the distributed
greedy algorithm in [19], [20] but not in a sequential manner.
Our second line of future work focuses on an unknown
number of attacks, e.g., captured by a stochastic process [28].
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APPENDIX

a) Distributed clique cover: We execute our distributed
non-overlapping clique cover algorithm in three commu-
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Fig. 9. Gazebo evaluations: Comparison (average and standard deviation across the 50 rounds) of Algorithm 1 with the centralized resilient algorithm
and the centralized greedy algorithm. Performance is captured by the expected number of tracked targets. Fig. 9-(b) compares the running time of three
algorithms. Fig. 9-(c) illustrates the number of cliques is around 3 and the clique number is around 5 when the communication range rc = 5 units.

nication rounds and one computation round as shown in
Algorithm 2.

1) 1st communication: each robot i finds its neighbors
within its communication range as Ni (Alg. 2, line 2).
It then stores its neighbors and itself in the set N+

i

(Alg. 2, line 3).
2) 2nd communication: each robot i shares the set N+

i

with all of its neighbors (Alg. 2, line 4). After the
sharing, it receives all N+

j , j ∈ Ni from its neighbors
(Alg. 2, line 5). We arbitrarily order these sets as
N+
j1, · · · ,N

+
j|Ni| for the convenience of expression. It

then stores the set N+
i and all N+

j from its neighbors
in a superset N+ = {N+

i ,N
+
j1, · · · ,N

+
j|Ni|} (Alg. 2,

line 6).
3) computation: Given the superset N+, each robot i

first finds all of its maximal cliques by computing the
intersections among m subsets in N+ from m = |N+|
to m = 2 in a loop (Alg. 2, lines 8-20). With a slight
abuse of notation, we denote |N+| as the number of the
subsets in N+. In the loop, for each value of m, there
are
(|N+|
m

)
possible intersections (Alg. 2, line 9). The

robot i stores all the intersections whose cardinality
equals to m in a superset Ci (Alg. 2, lines 10-15).
Once the superset Ci is non-empty, the robot i sets
its maximal clique set Ci∗ as Ci (Alg. 2, lines 16-
17). The loop with descending order of m terminates
(Alg. 2, line 18). After finding all maximal cliques,
the robot i decides its unique maximal clique. If there
is only one intersection (subset) in Ci, the robot i
sets its unique maximal clique Ciu as Ci∗ (Alg. 2,
lines 21-22). Otherwise, it computes the neighbors for
all the intersections (subsets) in Ci∗. Here, we compute
the neighbors of a set of robots as the union of the
neighbors from all the individual robots within this
set. It then picks the intersection which has fewest
neighbors as its unique maximal clique Ciu (Alg. 2,
line 24).

4) 3rd communication: each robot i shares its unique
maximal clique with all of its neighbors (Alg. 2,
line 26).

The robots with the same unique maximal clique formulate
a unique clique on graph G. A unique clique can have
one robot only. After all unique cliques are identified, the
non-overlapping clique cover is achieved on the graph G.
Since each robot finds its unique clique based on the local
information only, Algorithm 2 is a feasible or sub-optimal
(not global optimal) solution for covering the graph with
the minimum number of non-overlapping cliques. However,
the strength of Algorithm 2 is the way that the robot
decides its unique maximal clique when it has two or more
maximal cliques. Since the robot picks the maximal clique
with fewest neighbors, it increases the potential for other
maximal cliques to formulate other larger cliques, which
leads to a higher chance of generating fewer and larger non-
overlapping cliques.

b) Proof for Theorem 1: We first provide the following
notations for the convenience of the proof.

Denote the optimal selection as S? with |S?| ≤ N .
S? =

⋃K
k=1 S?k where S?k , k ∈ {1, · · · ,K} is the set

selected by the optimal solution in each clique Ck, and
|S?k | ≤ nk. Denote the worst-case attack on the optimal
set S? with respect to the whole network G as A?(S?|G)
with |A?(S?|G)| ≤ α. Similarly, denote the set selected by
the Algorithm 1 as S with |S| ≤ N . S =

⋃K
k=1 Sk where

Sk, k ∈ {1, · · · ,K} is the set selected by each clique Ck
with |Sk| ≤ nk. Denote the worst-case attack on the chosen
set S with respect to the overall graph as A?(S|G) with
|A?(S|G)| ≤ α.

Proof of approximation ratio. In Algorithm 1, all cliques
of robots select out strategy set S in parallel. In fact, these
cliques together rank out the global oblivious set. That is
because, the oblivious decision from all cliques are the union
set of all local oblivious sets, which is a superset of the global
oblivious set. But this global oblivious set is unknown to each



Algorithm 2: Distributed Non-overlapping Clique Cover
Input: • set of robots R

• positions the robots
• communication range rc

Output: Non-overlapping clique cover on graph G
1: for each robot i do
2: finds its neighbor set Ni within rc
3: sets N+

i = {i,Ni}
4: shares N+

i with its neighbors
5: receives all N+

j , j ∈ Ni
6: stores N+

i and all N+
j (s) in

N+ = {N+
i ,N

+
j1, · · · ,N

+
j|Ni|}

7: Ci ← ∅;
8: for m = |N+| : 2
9: compute all combinations of m subsets from

N+ as
(N+

m

)
10: for each combination in

(N+

m

)
do

11: computes its intersection, Cintersect
12: if |Cintersect| = m do
13: puts Cintersect in Ci
14: end if
15: end for
16: if Ci is not empty
17: sets its maximal clique set Ci∗ = Ci
18: breaks the for loop of m
19: end if
20: end for
21: if Ci∗ only has one subset do
22: sets its unique maximal clique as Ciu = Ci∗
23: else
24: chooses the subset of Ci∗ that has fewest neighbors
25: end if
26: shares its unique clique with all of its neighbors
27: end for

clique. We partition the strategy set S from Algorithm 1
into the global oblivious set So and S2. S2 = S \ So,
corresponding to the strategies on the subgraph G2.

We prove the approximation ratio of Algorithm 1 by
proving the following three inequalities.

f(S \ A?(S))
f?

≥ 1− νf (I)
2

f(S? \ A?(S?|G)), (5)

If K(G) = 1 :
f(S \ A?(S ))

f?
≥

1

2
max[

1

α+ 1
,

1

N − α
]f(S? \ A?(S?|G)), (6)

If K(G) ≥ 2 :
f(S \ A?(S ))

f?
≥

max[
1

α+ 1
,

1

N − α
]

1

K(G2)
1

ω(G2)
f(S? \ A?(S?|G)). (7)

Note that the number of cliques in subgraph G2, K(G2) ≥ 1,
since α < N . We start with the proof of the ineq. 5 by using

the property of the curvature νf (I).

f(S \ A?(S|G))

≥ (1− νf (I))
∑

a∈S2|G2

f(a) (8)

≥ (1− νf (I))
∑

a∈Sg
2 |G2

f(a) (9)

≥ (1− νf (I))f(Sg2 |G2) (10)

≥ 1− νf (I)
2

f(S?2 |G2) (11)

≥ 1− νf (I)
2

f(S? \ A?(S?|G)) (12)

where eqs. 8 - 12 hold for the following reasons. Ineq. 8
follows from [21, Lemma 2 and the proof of Theorem 1].
It is based on the property of the curvature and the fact
that every element in So is larger than every element in
S2|G2. In ineq. 9, Sg2 |G2 denotes the strategy set selected by
the greedy algorithm with centralized communication on the
subgraph G2. While S2|G2 is the strategy set selected by the
resilient algorithm (Alg. 1) on the subgraph G2. We know
the greedy algorithm with centralized communication avoids
more redundancy than the distributed resilient algorithm
(Alg. 1) does. Thus, the value f(a), a ∈ S2 is always larger
or equal to the value f(a′), a′ ∈ Sg2 where a and a′ are
the strategies from the same robot. Then, ineq. 9 holds.
Ineq. 10 holds from the submodularity of the function f .
Ineq. 11 holds from the property of the greedy algorithm [27,
Theorem 2.3] where S?2 |G2 denotes the optimal strategy set
on the subgraph G2. Finally, ineq. 12 holds from [29, Lemma
2].

When the communication graph G only has one clique,
Algorithm 1 is exactly the same as the centralized resilient
algorithm from [10, Algorithm 1], and thus ineq. 6 holds
accordingly from [10, Theorem 1].

Finally, we prove the third ineq. 7 as follows.

f(S \ A?(S|G))
≥ γf(S2|G2) (13)

≥ γ 1

K(G2)

K(G2)∑
k=1

f(S2,k|Ck(G2)) (14)

≥ γ 1

K(G2)

K(G2)∑
k=1

hkf(S?2,k|C(G2)) (15)

≥ γ 1

K(G2)
min
k
hk

K(G2)∑
k=1

f(S?2,k|Ck(G2)) (16)

≥ γ 1

K(G2)
1

ω(G2)
f(S?2 |G2) (17)

≥ γ 1

K(G2)
1

ω(G2)
f(S? \ A?(S?|G)) (18)

where k ∈ {1, · · · ,K(G2)}, γ = max[ 1
α+1 ,

1
N−α ] and

hk =


1

n2,k
, if n2,k = 1 or
Ck(G2) has an oblivious decision,

1
2 , else.



S2,k|Ck(G2) is the strategy set by Algorithm 1 on the clique
Ck(G2) and n2,k is its carnality. Eqs. 13-18 hold for the
following reasons. Ineq. 13 holds from [21, the proof of
Theorem 1]. Ineq. 14 holds from the monotonicity of the
submodular function f : f(S2|G2) ≥ f(S2,k|Ck(G2)) for all
k ∈ {1, · · · ,K(G2)}. Ineq. 15 holds from the distributed
resilient algorithm (Alg. 1) in each clique. As long as the
clique Ck(G2) has an oblivious strategy, f(S2,k|Ck(G2)) ≥
1

n2,k
f(S?2,k|C(G2)). That is because, the oblivious decision

picks the strategy with the largest contribution without
considering the redundancy. There is a special case where
the local oblivious set of the clique Ck(G) is exactly the
global oblivious set. In this case, the clique Ck(G2) only
performs a greedy algorithm. Because the local oblivious
set of Ck(G) is picked as the global oblivious set and the
remaining robots, Ck(G2) execute a greedy algorithm only. In
this case, f(S2,k|Ck(G2)) ≥ 1

2f(S
?
2,k|C(G2)) which is from

the property of the greedy algorithm [27, Theorem 2.3] with
S?2,k|Ck(G2) denoting the optimal strategy set on the clique
Ck(G2). Also, when n2,k = 1, both an oblivious strategy
and a greedy strategy are the same as the optimal strategy.
Ineq. 16 holds obviously from ineq. 15. To explain ineq. 17,
we compute mink hk as

1
ω(G2) , if n2,k = 1 for all k ∈ {1, · · · ,K(G2)}

or all Ck(G2) k ∈ {1, · · · ,K(G2)}
have at least an oblivious decision,

mink[
1

n2,k
, 12 ], else: there exists one clique Ck(G2)

that only has greedy strategy.

Given ω(G2) is the clique number of the subgraph G2, we
have ω(G2) ≥ n2,k for all k. As long as there exists one
clique Ck(G2) containing more than one robot, n2,k ≥ 2.
Thus, overall, mink hk ≥ 1

ω(G2) , and therefore ineq. 17 holds
from the submodularity of the function f . Ineq. 18 holds
from [29, Lemma 2].

Combining the proofs of ineqs. 5, 6, and 7, we prove the
approximation ratio in Theorem 1.

Proof of running time. Since all cliques perform a
resilient algorithm in parallel by Algorithm 1, we only focus
on the clique which has the largest number of robots. We
know the number of the robots in this largest clique is
the clique number of the graph, ω(G). Given each robot
has D candidate strategies, the oblivious approach takes
O(ω(G)D log(ω(G)D)) evaluations to rank out the local
oblivious set by using quick sort. And then the greedy
approach takes O((ω(G) − α)2D2) evaluations for the re-
maining robots if ω(G) > α. If ω(G) ≤ α, the greedy
algorithm has nothing to do, and thus takes 0 evaluations.
Thus, overall, algorithm 1 takes O(ω2(G)D2) evaluations.


