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SUMMARY

This study presents a distributed model predictive control (MPC) strategy to achieve flocking of multi-agent
systems. Based on the relative motion between each pair of neighboring agents, we introduce a neighbor
screening protocol, by which each agent only focuses on its neighbors, which have the relative motion that
violates the formation of flocks. Then, a truly distributed MPC flocking algorithm (Algorithm 1) is designed
with consideration of neighbor screening mechanism. Specifically, at each sampling instant, each agent
monitors the information in the networked system, finds its neighbors to form its subsystem, determines the
screened neighbor set, and optimizes its plan by collecting the position states within the screened subsystem.
And geometric properties of the optimal path are used to guarantee the formation of the flock without inter-
agent collision. Finally, the performance and advantage of the proposed distributed MPC flocking strategy
are vividly verified by the simulation results. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, more and more efforts from diverse fields including biology, physics, social sci-
ences, and computer science have been devoted to the collective behaviors of multi-agent systems
(MASs), which have the remarkably characteristic patterns such as flocking, swarming, and school-
ing from individual interactions [1–10]. Exploring the mechanisms of these fascinating behaviors
by using distributed or decentralized decision-making approaches has significant implications on
mobile sensor network, collaborative robots, ground/underwater vehicles, unmanned aerial vehicles
(UAVs), satellite cluster alignment, and congestion alleviation of communication networks [11–16].

In 1986, Reynolds [1] has pioneered three fundamental rules for animation of natural
flocks/swarms: separation, alignment, and cohesion. Based on these three basic rules, a surge
of brilliant achievements have been obtained for the flocking of MASs. Vicsek et al. [2] have
introduced the famous Vicsek flocking model based on the inter-agent velocity regulation. Later,
Jadbabaie et al. [3] have extended the flocking to several general models. As a representative work,
Olfati-Saber [8] has presented three flocking algorithms for design and analysis of flocking prob-
lem, which consider flocking behaviors in free-space and presence of multi-obstacle environment.
Generally, a flocking control strategy is constructed by combining the gradient of a collective
potential or cost function which penalizes the deviation from the flocking structure with a velocity
synchronization approach which achieves alignment by coordinating inter-agent velocity [3–8].
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To date, in most of previous flocking protocols, each agent is only available to collect the infor-
mation of its neighbors at the given time, and then takes a timely motion decision without taking
advantage of some predictive intelligence. However, biology literature has witnessed that almost all
living creatures have predictive intelligence allowing them to predict the future behaviors of their
neighbors based on the current and past observations. Examples about creatures’ predictive intelli-
gence have been vividly exhibited in the swarming of bees [17, 18], biological system [19–21], and
so on. Such predictive mechanisms [22–24] with capacities of optimizing relevant performance and
taking account of the constraints have attracted researchers to apply these appealing features in the
study of MASs.

To make use of individual predictive intelligence among collective behaviors, Ferrai-Trecate et al.
[25] have proposed a decentralized MPC strategy to achieve the consensus of the MASs with con-
trol input constraints. Following this line, Zhang et al. [26–30] have designed a series of MPC
methods for the collective behaviors of MASs, which improve the efficacy of the consensus by pre-
dictive mechanism and pinning control [31], deal with the control input constraints, and achieve the
flocks of second-order MASs. A general framework for distributed MPC of discrete-time nonlinear
systems has been presented in [32], in which cooperative tasks are vividly illustrated by synchro-
nization of four identical Van der Pol oscillators. For sampled-data MASs, Zhan and Li [33] have
presented a distributed MPC consensus algorithm, achieved the fast weighted-average consensus of
MASs and enlarged the feasible range of sampling interval. And the flocking control of MASs via
MPC has been researched in their work [34] where both centralized and distributed impulsive MPC
flocking algorithms are proved to realize the flocks of MASs based on position-only measurements.
Recently, we have proposed several distributed MPC strategies [35, 36] to achieve the consensus
or synchronization of MASs, which are displayed by five unmanned aerial vehicle model and five
linear oscillators, respectively.

In short, the flocking problem focuses on achieving the flocks or a rigid conformation where
each pair of neighboring agents has the same distance. Obviously, only when the velocities of all
agents reach the consensus or synchronization, can the rigid flocks be guaranteed. Therefore, as
two representative themes of MASs, flocking, and consensus have a close connection with each
other. However, designing a distributed MPC scheme with optimal energy and less local informa-
tion exchange to form the rigid flocks for MASs is still a challengeable work. In this paper, our main
contributions include (i) A neighbor screening protocol, based on the relative motion between each
pair of neighboring agents, is proposed to screen agent’s neighbor(s) to determine screened neigh-
bor set for receding horizon optimization in MPC. The proposed neighbor screening mechanism is
inspired by the work [37] where each agent only considers the subset of its neighbor agents with
whom it is susceptible to collide. (ii) A truly distributed MPC flocking algorithm, that is, at each
sampling instant, each agent monitors the information in the networked system, finds its neighbors,
determines its screened neighbor set, and collects the position states in the screened subsystem for
optimization, is presented. (iii) The advantages including less local information exchange and fast
convergence of proposed distributed MPC flocking strategy are illustratively displayed.

The remainder of this paper is organized as follows. The necessary notations and definitions,
basic knowledge about graph theory and MPC flocking control, and our proposed neighbor screen-
ing mechanism are presented in Section 2. In Section 3, we propose a distributed MPC flocking
strategy via neighbor screening to achieve the lattice conformation. Simulation results showing the
performance of our proposed distributed MPC flocking strategy are displayed in Section 4. Finally,
Section 5 summarizes the paper.

2. PRELIMINARIES

We first introduce some notations and definitions to be used throughout this paper. 1 D Œ1; 1; :::; 1�T ,
e2 D Œ1 0�1�2. Matrix Im indicates the identify matrix with dimension m. The definition Rm

denotes the set of m dimensional real column vectors. k � k and ˝ indicate the Euclidean norm and
the Kronecker product, respectively. The notation �.kC t jk/ denotes the predicted value � at instant
k C t based on the currently available information at instant k.
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The fundamental concepts of flocking for MASs in [8], our proposed neighbor screening
mechanism and basic knowledge of MPC flocking method are described in the following.

2.1. Flocks: proximity nets and ˛-lattices

Consider a group of N agents. It can be abstractly described as a graph indicated by G D .V; E/,
consisting of a set of vertices V D ¹1; 2; :::; N º and edges E � ¹.i; j / W i; j 2 V; j ¤ iº. jVj and
jE j denote the order and the size of the graph, respectively. If .i; j / 2 E ” .j; i/ 2 E , we call
the graph G is undirected, and this paper concerns undirected graph only. If there exists a path, that
is, a sequence of edges .i; k1/; .k1; k2/; :::; .ks�1; ks/; .ks; j /; kt 2 V; t D 1; :::; s between any two
vertices i; j 2 V , the undirected graph G is connected. The neighbor set of agent i is denoted by
Ni D ¹j 2 V W .i; j / 2 Eº, and jNi j denotes the number of i’ neighbors. The motion of each agent
i , i 2 ¹1; :::N º is governed by the kinematics

Pqi D pi

Ppi D ui ;
(1)

where qi ;pi ;ui 2 Rm (e.g., m D 2; 3) indicate the position, velocity, and acceleration of agent
i; i 2 V , respectively. For notational convenience, 8i; j 2 V , define

qj i D qi � qj ;

pj i D pi � pj :
(2)

Next, define rc > 0 as the communication range between two agents. Then the neighbor set of
agent i is

Ni D j 2 V W dij < rc ; (3)

where dij WD kqj � qik denotes the Euclidean distance between agent i and agent j . And then the
set of edges between neighbors is defined as

E.q/ D .i; j / 2 V � V W dij < rc ; i ¤ j (4)

that depends on the organization of all agents q D col.q1; q2; :::; qN / 2 RNm. The topology
G.q/ D .V; E.q// is called a proximity net, and the configuration .G.q/; q/ is called a proximity
structure.

In [8], Olfati-Saber proposed an ˛-lattice conformation to model a desirable geometry of flocks,
which can be described as the solutions of the following algebraic constraints:

dij D d; 8j 2 Ni .q/; (5)

where d indicates the desirable distance between neighboring agents, and d < rc . In order to
discribe the structure, which is close to the ˛-lattice, Olfati-Saber also shown the following set of
inequalities:

� ı 6 dij � d 6 ı; 8j 2 Ni .q/; (6)

and defined its solution as a quasi ˛-lattice. Here, ı denotes the allowable error.
Besides, with the formation of ˛-lattice structure, the velocity consensus of all the agents should

be reached

pi D Np; 8i 2 V; (7)

with the average velocity of all agents Np D 1=N
PN
iD1 pi .
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2.2. Neighbor screening via relative motion

Our main objective is to realize the ˛-lattice conformation where each pair of neighboring agents
has a desirable distance d . If the relative motion between a pair of neighboring agents facilitates the
arrival of the desirable conformation, it is not necessary to take action to regulate their behaviors. On
the contrary, if the relative motion contradicts the formation of the desirable lattice, some strategies
should be conducted to constrain this trend. Thus, as for each agent i , we screen its neighbor(s)
j 2 Ni and only focus on the neighbors with the relative motion, which contradicts the desirable
conformation, and collect these neighbors in a set N�i . We first display the relative motion of a pair
of neighbors, i and j , in Figure 1.

And define the relative motion index between agent i and its neighbor j as

Mij DMi �Mj ; (8)

where Mi WD q
T
jipi and Mj WD q

T
jipj indicate the motion indices for agent i and j , respectively.

Then the following cases are provided to obtain the screened neighbor set N�i :

Case 1, dij < d < rc :
This case shows that the distance between agent i and its neighbor(s) j is shorter than the desir-

able distance d , so its neighbor(s) with the relative motion, which contributes towards reducing
the distance, should be chosen. Then consider the following subcases:

(1) Mij > 0. It implies that the relative motion between agent i and agent j contributes
towards increasing the distance, and thus j … N�i .

(2) Mij < 0. It implies that the relative motion between agent i and agent j contributes
towards reducing the distance, and thus j 2 N�i .

(3) Mij D 0. It implies no relative motion between agent i and agent j . But the distance
dij ¤ d , and thus j 2 N�i .

Case 2, d < dij < rc :
This case shows that the distance between agent i and its neighbor(s) j is longer than the desir-

able distance d , so its neighbor(s) with the relative motion, which contributes towards increasing
the distance, should be chosen. Then consider the following subcases:

(1) Mij > 0. It implies that the relative motion between agent i and agent j contributes
towards increasing the distance, and thus j 2 N�i .

(2) Mij < 0. It implies that the relative motion between agent i and agent j contributes
towards reducing the distance, and thus j … N�i .

(3) Mij D 0. It implies no relative motion between agent i and agent j . But the distance
dij ¤ d , and thus j 2 N�i .

Case 3, dij D d < rc :

Figure 1. Relative motion of a pair of neighboring agents.
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This case shows that the distance between agent i and its neighbor(s) j is equal to the desir-
able distance d , so its neighbor(s) with the relative motion should be chosen. Then consider the
following subcases:

(1) Mij ¤ 0. It implies that there exists the relative motion between agent i and agent j , and
thus j 2 N�i .

(2) Mij D 0. It implies no relative motion between agent i and agent j , and thus j … N�i .

2.3. Flocking via model predictive control

Consider that MPC involves the state prediction of discrete future time instants, we discretise (1) as

qi .k C 1/ D qi .k/C Tpi .k/

pi .k C 1/ D pi .k/C T ui .k/;
(9)

where T indicates sampling interval. For notational convenience, define xi .k/ WD�
qTi .k/;p

T
i .k/

�T
2 R2m.

Through predicting future states in Hp steps based on the dynamic (9) and optimizing the cost
function (10), the control inputs can be computed in future Hu steps.

The objective of flocking control is to achieve an ˛-lattice conformation, namely, satisfying (5).
Thus, define the cost function as

min
¹u.kCt jk/º

Hu�1
tD0

J.k/ D

HpX
tD1

0
@X
i;j2V

kdij � dk
2

1
AC �Hu�1X

tD0

ku.k C t jk/k2; (10)

where �.kCt jk/ indicates the prediction of sampling instant kCj at current sampling instant k, and
u D col.u1;u2; � � �;uN /. Hp and Hu denote prediction horizon and control horizon, respectively.
At current sampling instant k, agents collect the global state information, collaboratively optimize
the cost function (10) to obtain ¹u�.k C t jk/ºHu�1tD0 , and apply u�.kjk/ only.

3. FLOCKING VIA DISTRIBUTED MODEL PREDICTIVE CONTROL ALGORITHM

The MPC flocking strategy presented Section 2.3 is a centralized MPC method, where the states of
global system are known to each agent. However, due to agents’ limited communication capabilities
in actual situation, they usually have the access to some information provided by their neighbors
instead of the global knowledge. Thus, we further design a distributed MPC flocking strategy, in
which each agent optimizes its control input by receiving the state information of its neighbors and
itself only.

3.1. Prediction model and subsystem design

First, rewrite the discrete-time dynamics (9) of agent i in a compact way

xi .k C 1/ D Axi .k/CBui .k/; (11)

with

A D

�
1 T

0 1

�
˝ Im; B D

�
0

T

�
˝ Im:

Through iterative computations of (11), we obtained the prediction model of agent i

X i .k C 1/ D Pxxi .k/CPuU i .k/; (12)
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where X i .k C 1/ WD
�
xTi .k C 1jk/;x

T
i .k C 2jk/; � � �;x

T
i .k CHpjk/

�T
, U i .k/ WD�

uTi .kjk/;u
T
i .k C 1jk/; � � �;u

T
i .k CHp � 1jk/

�
,Px WD col

h
AT ; .A2/T ; � � �; .AHp /T

i
2mHp�2m

and Pu D

2
66664

B

AB
: : :

:::
::: B

AHp�1B � � � AB B

3
77775
2mHp�mHp

;

where the control horizon Hu equals to the prediction horizon Hp .
Then, decompose the global networked system consisting of N agents into N subsystems

accordingly. For agent i , its subsystem consists of its neighbors and itself, defined by Si WD°
i; ni1; n

i
2; :::; n

i
jNi j

±
. Thus, the state of Si is indicated by xi WD

h
xTi ;x

T
i1;x

T
i2; � � �;x

T
ijNi j

iT
.

3.2. Optimization via neighbor screening

In the subsystem Si , agent i only cares about its neighbor(s) in the screened neighbor set N�i ,
because these neighbors have the relative motion that violates desirable lattice conformation. Thus,
define the screened subsystem for agent i as S�i , which consists of agent i and i’ neighbor(s)
in the screened neighbor set. The state and the position state of screened subsystem S�i are

indicated by xi� WD
h
xTi ;x

T
i1;x

T
i2; � � �;x

T
ijN�
i
j

iT
and qi� WD

h
qTi ; q

T
i1; q

T
i2; � � �; q

T
ijN�
i
j

iT
, respec-

tively. Based on the state prediction rule in MPC, define X i� WD
h
XT
i ;X

T
i1; � � �;X

T
ijN�
i
j

iT
with

X j .kC1/ WD
h
xTj .k C 1jk/;x

T
j .k C 2jk/; � � �;x

T
j .k CHpjk/

iT
; j 2 N�i . Then, the future state

of the subsystem S�i is

X i�.k C 1jk/ D P i�x x
i�.k/CP i�u U

i�.k/; (13)

with

P i�x D IjN�i jC1 ˝Px 2 R2mHp.jN
�
i
jC1/�2m.jN�

i
jC1/;

P i�u W D IjN�i jC1 ˝Pu 2 R2mHp.jN
�
i
jC1/�mHp.jN

�
i
jC1/;

U i�.k/ W D
h
U Ti ;U

T
i1;U

T
i2; � � �;U

T
ijN�
i
j

iT
:

Next, define ci�j WD Œ1; 0; � � �; 0;�1j�th; 0; � � �; 0�1�.jN�i jC1/˝e2˝Im as the information collection
vector, which helps agent i collect the information from its neighbor(s) in the screened neighbor set
N�i . Here, the term ˝e2 indicates that only the position state is used for optimization calculation.
Then stack the information collection vectors in the subsystem S�i as

ci� WD

��
cii1
�T
;
�
cii2
�T
; � � � ;

�
ciijN�

i
j

	T �T
2 Rm.jN

�
i
j/�2m.jN�i jC1/: (14)

Meanwhile, define the desirable distance between agent i agent j as

l ij WD
dqj i

dij
D
d � e2 ˝ Im.xi � xj /

ke2 ˝ Im.xi � xj k
: (15)
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Then, stack the desirable distances in the subsystem S�i as

l i� D

��
l ii1
�T
;
�
l ii2
�T
; � � �;

�
l iijN�

i
j

	T �T
2 Rm.jN

�
i
j/�1: (16)

Next, define

g.qi�/ D ci�xi� � l i�; (17)

with ci� and l i� given in (14) and (16), respectively. Thus,

kg.qi�/k2 D
X

i;j.j2N�i /

kqj i � dqj i=kqj ikk
2 (18)

collects the potential error between each edge length of screened subsystem S�i and the desir-
able distance d . Then, the predicted potential error of S�i in future Hp steps is G i�.k C 1jk/ WD�
.gi�.k C 1jk//T ; .gi�.k C 2jk//T ; � � �; .gi�.k CHpjk//

T
�T

and can be computed by

G i�.k C 1jk/ D C i�.k C 1jk � 1/X i�.k C 1jk/ �Li�.k C 1jk � 1/; (19)

whereC i�.kC1jk�1/ WD
h
.ci�.kC1jk�1//T ; .ci�.k C 2jk�1//T ; � � �;

�
ci�.kCHpjk � 1/

�T iT
andLi�.kC1jk�1/ WD

�
.l i�.k C 1jk � 1//T ; .l i�.k C 2jk � 1//T ; � � �; .l i�.k CHpjk � 1//

T
�T

.
Because the objective of flocking problem is to design a control law to form an ˛-lattice, we

compute the control law ui by solving the following finite horizon optimization problem
ProblemPi : At instant k,

min
U i�.k/

Ji .k;U i�.k// D kG
i�.k C 1jk/k2 C �kU i�.k/k2

1�
D


C i�.k C 1jk� 1/X i�.k C 1jk/ �Li�.k C 1jk � 1/k2 C �kU i�.k/



2
2�
D


C i�.k C 1jk � 1/ �P i�x xi�.k/CP i�u U i�.k/�
�Li�.k C 1jk � 1/k2 C �kU i�.k/



2
s:t: xi .k/ 2 X

ui .k/ 2 U ;
(20)

where
1�
D and

2�
D are guaranteed by Equations (19) and (13), respectively. Equation (20) can be

converted into a quadratic programming problem. Particularly, if there exist no state and control
input constraints, then optimize problem Pi by @Ji .k;U i�.k//

@U i�.k/
D 0 to obtain the analytical solution

U �i�.k/ D
h�
P i�u

�T
.C i�/TC i�P i�u C �I

i�1
�
�
P i�u

�T
.C i�/T

�
C i�P i�x x

i�.k/ �Li�
�
:

(21)

First, pick agent i’ optimal control input U �i .k/ from the optimal control input sequence U �i�.k/
of the screened subsystem S�i .

U �i .k/ D Œ1; 0; � � �; 0�1�.jN�i jC1/ ˝ IHp ˝ ImU
�i�.k/:

Usually, the first m entries of U �i .k/ are extracted as the actual control input for agent i , namely,

u�i .kjk/ D Œ1; 0; � � �; 0�1�Hp ˝ ImU
�
i .k/: (22)
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Remark 1
The reason why agent i uses the information at sampling instant k � 1 to predict C i�.kC 1jk � 1/
and Li�.k C 1jk � 1/ in (19) is that agent i updates its current state xi .k/ with respect to the
previous states of the subsystem Si according to the MPC rule.

3.3. Distributed model predictive control flocking algorithm

Through solving the receding horizon optimization problem (20), we compute the distributed MPC
law u�i .kjk/ for each agent i at sampling instant k. Then, we propose the distributed MPC algorithm
to achieve the flocks of the MAS.
Algorithm 1: At instant k, 8i 2 V

(1) Agent i monitors the information in the networked system to find its neighbors.
(2) Agent i determines its screened neighbor set N�i , collects the position states of the agents at

the previous sampling instant k � 1 in the screened subsystem, that is, xj .k � 1/; j 2 S�i
and solves the receding horizon optimization problem (20) to obtain its local optimal control
sequence U �i .k/ and computes its state xi .k/.

(3) Agent i broadcasts its state xi .k/ in the networked system, facilitating other agents to solve
their optimization problems in the next sampling instant k C 1.

(4) Agent i extracts u�i .kjk/ only from its local optimal control sequence U �i .k/.
(5) Move horizon to the next sampling instant, set k D k C 1, and return to step 1).

Remark 2
Let us stress that, at the step (1) of Algorithm 1, ‘monitor’ does not mean that the agent needs to
use the global information, because it only needs to make a judgment to determine its neighbors.
Specifically, in actual situation, each agent aimlessly broadcasts its states and concurrently monitors
the states of other agents in the environment. If the signal received by the agent is too weak to be
utilized effectively, the agent will ignore this signal. In fact, the agent only cares about the signal,
which it can use and regards this sender as its neighbor. On the other hand, the receiver also broad-
casts its state, so the sender can simultaneously receive the information from the receiver, because
all the agents are identical and they have the same capacities of broadcasting and monitoring. There-
fore, the communication between a pair of neighboring agents is mutual and can be abstracted as
the undirected topology. Generally, the intensity of the signal depends on the distance between the
sender and the receiver, which explains why we define the communication range rc as the neighbor
selection criterion.

In Algorithm 1, each agent monitors the states including positions and velocities of other agents
to find its neighbors, and then determines its screened neighbor set according to the rules in
Section 2.2. And the purpose of collecting the position state is to minimize the error between the dis-
tance between each pair of neighboring agents and the desirable distance d by solving the receding
horizon optimization problem in MPC. The proposed distributed MPC flocking algorithm is a syn-
chronous parallel strategy, because all the agents in the networked system solve their optimization
problems at each sampling instant.

4. STABILITY ANALYSES

Here, we present stability analysis of the distributed MPC flocking strategy by using the geometric
properties of the optimal path followed by individual agents. We first give the definition of n-path
and then two assumptions as follows:

Definition 1
[25] Given two points P1; P2 2 Rm, let P1P2 be the segment jointing them and denote by jP1P2j
the segment length. An M -path is an ordered sequence of M points T D ¹P1; P2; � � �; PM º 2 Rm.

Assumption 1
There exists � > 0 such that for 8t > 0, the network of the screened MAS governed by (9) is
connected across Œt; t C ��.
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Assumption 2
For the screened MAS, given any initial position state q�.0/ 2 RNm, there exists a nearest desired
state q�0 satisfying kq0jik D d;8.i; j / 2 E.q�0/, or g.q�0/ D 0 with

kg.q�/k2 WD
X

.i;j /2E.q�/

kqj i � dqj i=kqj ikk
2: (23)

Besides, for any q�1; q�2 2 RNm with kq�1 � q�0k 6 kq�2 � q�0k, it always holds that
kg.q�1/k 6 kg.q�2/k.

Remark 3
Here, E.q�/ indicates the edges of the screened MAS constructed by each agent i and its screened
neighbors set N�i .

Next, a lemma [30] is presented to compare the segment lengths of different M -paths.

Lemma 1
Let TA D ¹A1; A2; � � �; AM º be an M -path. Given O , there always exists an M -path TB D
¹B1; B2; � � �; BM º with B1 D A1, pointing towards O and satisfying the following inequalities:

jBjOj 6 jAjOj; (24)

jBjBjC1j 6 jAjAjC1j; (25)

jBjC1BjC2 � BjBjC1j 6 jAjC1AjC2 � AjAjC1j; (26)

with

jBM�1BM j 6 jBM�2BM�1j; (27)

and j D 1; 2; � � �;M � 2.
Please refer to the papers [25, 30] for a proof of these results.

Theorem 1
Given Assumptions 1 and 2, the MAS (9) forms a rigid ˛-lattice flock by applying the distributed
MPC law (22). Besides, if the initial state of the screened MAS q�0 satisfies kg.q�.0/k < d , then
no inter-agent collisions occur for all t > 0.

Proof
Part I (˛-lattice flock): Given the MAS(9), a rigid ˛-lattice flock is achieved when

lim
k!1

kqj .k/ � qi .k/k D d;8.i; j / 2 E.q/;

lim
k!1

pi .k/ D pj .k/;8i; j 2 N:
(28)

Based on the Assumption 2, each screened subsystem S�i has a desired initial state qi�
0

satis-

fying kqj i;.j2N�
i
/k D d , or g

�
qi�

0
	
D 0 because qi�

0
is directly extracted by q�0. Besides,

define qi�
1

and qi�
2

as two arbitrary distinct positions of screened subsystem S�i . According to

Assumption 2, if



qi�1 � qi�0


 6 


qi�2 � qi�0


, then




g �qi�1	


 6 


g �qi�2	


 : (29)
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Next, with index (18) and system dynamics (9), rewrite the optimization problem Ji .k/ of the
screened subsystem S�i as

min Ji .k/ D min
HpX
jD1



g.qi�.k C j jk//

2

C
�

T 4

Hp�1X
jD0

kŒqi .k C j C 2jk/ � qi .k C j C 1jk/�

� Œqi .k C j C 1jk/ � qi .k C j jk/�k
2;

(30)

with the last term following the fact that

ui .kCj jk/ D ¹Œqi .kCj C2jk/�qi .kCj C1jk/�� Œqi .kCj C1jk/�qi .kCj jk/�º=T
2: (31)

With Assumption 2 and Lemma 1, there always exists a position sequence
°
qi�
�
.k C 1jk/;

qi�
�
.k C 2jk/; � � �; qi�

�
.k CHpjk/

±
pointing towards qi�

0
�

with g
�
qi�

0
	
D 0

	
such that




qi��.k C j jk/ � qi�0


 6 


qi�.k C j jk/ � qi�0


 ; (32)




g �qi��.k C j jk/	


 6 

g �qi�.k C j jk/�

 ; (33)




hqi��.k C j C 2jk/ � qi��.k C j C 1jk/i � hqi��.k C j C 1jk/ � qi��.k C j jk/i


 ;
6


�qi�.k C j C 2jk/ � qi�.k C j C 1jk/� � �qi�.k C j C 1jk/ � qi�.k C j jk/�

 ;

j D 0; 1; � � �;Hp � 1; (34)

and

qi�
�
.k CHp � 1jk/ � q

i��.k CHp � 2jk/ D q
i��.k CHpjk/ � q

i��.k CHp � 1jk/: (35)

In order to facilitate the theoretical analysis, we assume that agent j 2 N�i has zero accelerations
in the prediction of agent i , that is, uj .kC l jk/ D 0; l D 0; 1; � � �;Hp � 1. This setting only affects
the flocking speed, but will not influence the stability of the MAS (9) by applying the control law
(22). Then submit (31) into (34) and (35) yields

ku�i .k C j jk/k 6 kui .k C j jk/k ; j D 0; 1; � � � ;Hp � 1: (36)

Also, from (33) and (34), the optimal position sequence of the optimization index (30) is necessary
pointing towards qi�

0
, such that




g �qi��.k C j jk/	


 6 


g �qi��.k C j � 1jk/	


 ; j D 1; 2; � � �;Hp: (37)

Then, define eU i .kC1jkC1/Dh.u�i .kC1jk//T ;.u�i .kC2jk//T ; � � �; .u�i .k CHp � 1jk//T ; 0T iT .

At time instant k C 1, the best available value



g �qi��.k C 1jk/	


 is obtained by applying

u�i .kjk/, so the position sequence of qi�.k C j jk C 1/ starts at qi�
�
.k C 1jk/. By prediction

iteration, one has
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Ji
�
k C 1; eU i .k C 1jk C 1/� D 


g.qi��.k CHp C 1jk//


2 C HpX

jD2




g �qi��.k C j jk/	


2

C �

Hp�1X
jD1

ku�i .k C j jk/k

6



g �qi��.k CHpjk/	


2 C HpX

jD2




g �qi��.k C j jk/	


2

C �

Hp�1X
jD1

ku�i .k C j jk/k;

where the ‘6’ follows from Lemma 1. More specifically, the last component of eU i .kC1jkC1/ is 0
(or the velocity pi .kCHp�1jk/ is assumed to be constant), which corresponds to (27). Considering

that qi�
�
.kCj jk/; j D 1; ���;Hp is pointing towards qi�

0
, one has




g.qi��.k CHp C 1jk//


2 6


g �qi��.k CHpjk/	


2. Thus,

Ji .k C 1; eU i .k C 1jk C 1// � Ji .k;U �i .kjk//
6



g �qi��.k CHpjk/	


2 � 


g �qi��.k C 1jk/	


2 � �ku�i .kjk/k2 6 0: (38)

The last ‘6’ is guaranteed by the inequality (37) together with ��ku�i .kjk/k
2 6 0. However, theeU i .k C 1jk C 1/ is not necessary the optimal control law eU �i .k C 1jk C 1/ at time instant k C 1,

and thus,

Ji .k C 1; eU �i .k C 1jk C 1// 6 Ji .k C 1; eU i .k C 1jk C 1//: (39)

Then, according to (38) and (39)‡, one has

Ji .k C 1; eU �i .k C 1jk C 1// 6 Ji .k;U �i .kjk//: (40)

and the ‘=’ holds if and only if the control law U �i .kjk/ D 0. Taking Ji .k; eU i .kjk// as Lyapunov
function and considering the arbitrary selection of the screened subsystem S�i , one has that the
screened MAS governed by (9) and (22) is stable with an optimal equilibrium at qi�

0
.

Then, given Ji .k/ > 0 and (39), (40), one has

lim
k!1

Ji
�
k C 1; eU �i .k C 1jk C 1/� � Ji �k;U �i .kjk/� D 0;

and thus, it follows from (38) that

lim
k!1

ku�i .kjk/k D 0; (41)

lim
k!1




g �qi��.k CHpjk/	


2 � 


g �qi��.k C 1jk/	


2 D 0: (42)

The convergence of pi is guaranteed by Equation (41), because

lim
k!1

kpi .k C 1/ � pi .k/k D lim
k!1

T ku�i .kjk/k D 0:

‡Correction added on 23 August 2016, after first online publication: Citation of equations (39) and (40) has been corrected
to (38) and (39), respectively.
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Moreover, due to the arbitrary selection of the positive weighting factor �, one has that


g �qi��.k C j jk/	


 decreases with j until arriving



g �qi�0	


 D 0, which means

limk!1 kjqi .k/ � qj2N�
i
.k/k D d and limk!1 pi .k/ D pj2N�

i
.k/. Given Assumption 1, one

has that the flock of the screened MAS is achieved. On the other hand, for each agent i’ neighbors
outside the screened neighbor set, they always have the relative motion, which facilitates the for-
mation of the flock, or they have already achieved the suitable states, which the desirable flocking
conformation needs. Therefore, one has that (28) holds or a rigid ˛-lattice of the MAS is formed.

Part II (Collision avoidance): Here, we prove this by contradiction. Considering kg.q�.0//k <
d , one has kg.qi�.0//k 6 kg.q�.0//k < d . Given (37), one obtains kg.qi�.k C 1//k 6
kg.qi�.k//k < d , and thus,

kg.qi�.k//k < d; 8k > 0; (43)

when kg.qi�.0//k < d . Without loss of generality, assumes a collision happens between agent i
and one of its screened neighbor j 2 N�i at time instant k D Ok > 0, that is, qj i . Ok/ D 0. Thus, one
has

kqj i � dqj i=kqj ikk D d;

and thus,



g �qi�. Ok/	


 > d , which contradicts (43). Therefore, collisions within the screened

MAS are avoided. Besides, for each agent i’ neighbors outside the screened neighbor set, they
always have the relative motion, which facilitates the flocking process, and thus, there exists no
collisions. To sum up, the collision avoidance of the MAS is guaranteed all along. �

5. SIMULATION RESULTS

In this section, a number of simulations are displayed to verify the effectiveness and advantage of
the proposed distributed MPC algorithm.

Consider a MAS with n D 50 agents moving in a x � y free space. Each agent follows dynamics
(9) with distributed MPC input (22). Fifty agents, each endowed with a controller, are tasked to
accomplish the lattice conformation where each pair of neighboring agents has the same distance.
The initial planar positions and velocities of 50 agents: qi .0/;pi .0/ 2 R2; i D 1; 2; � � �; 50 are
randomly chosen from the boxes: Œ�15; 15� � Œ�15; 15� and Œ1; 2� � Œ1; 2�, respectively. Set the
desirable distance d D 7, the allowable error ı D 0:1d , the communication range rc D 1:2d , the
sampling interval T D 0:1 sec, and the prediction horizon Hp D 3.

The initial positions of the agents are shown in Figure 2(a) where the solid lines with arrows
represent the velocity vectors. The movements and relationships of the agents are evolved from
k D 0 to k D 70 are depicted throughout Figure 2. Fifty agents cooperatively achieve the geometry
of flocks: quasi ˛-lattice as shown in Figure 2(f) where the solid lines among agents represent
the neighboring relations. For convenience of viewing, the neighboring relations among agents are
only depicted in Figure 2(f), in which each pair of neighboring agents has the approximately equal
distance. The agents coordinate their distances and velocities according to the proposed distributed
MPC algorithm. Namely, at each sampling instant, each agent monitors the information of other
agents to find its neighbors or its subsystem, and then screens its neighbors via relative motion to
determine the screened neighbor set for optimization.

We then use lattice disagreement index qerr and velocity disagreement index perr to qualify the
irregularity of an ˛-lattice structure and the dissensus of velocity, respectively. Here, define

qerr.k/ D

P
i;j2E kdij � dk

jE j
; (44)

and

perr.k/ D

P
i;j2V kpi .k/ � Npi .k/k

N
: (45)
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Figure 2. Flocking of 50 agents under proposed distributed model predictive control (MPC) strategy. [Colour
figure can be viewed at wileyonlinelibrary.com]

Figure 3(a) displays the trajectory of lattice disagreement index qerr , which asymptotically
reaches a stable value(0.4052) that is less than the allowable error ı D 0:7.0:1d/. Therefore, after
certain steps, the formation of an ˛-lattice structure is guaranteed by our purposed control strategy.
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Figure 3. Trajectory evolution of lattice disagreement and velocity disagreement under proposed control
strategy. [Colour figure can be viewed at wileyonlinelibrary.com]

Table I. The number of agent i’ neighbor set Ni and its screened neighbor set N�
i

(i D 1; 8; 17; 31; 40) at selected sampling instant k D 1; 20; 50.

Agent 1 Agent 8 Agent 17 Agent 31 Agent 40

Comparison N1 N�1 N8 N�8 N17 N�17 N31 N�31 N40 N�40

k D 1 16 14 7 6 11 8 4 3 20 18
k D 20 10 9 5 4 5 3 2 2 11 10
k D 50 6 4 4 4 4 3 2 2 5 5

Besides, the trajectory of velocity disagreement perr is depicted in Figure 3(b) where the velocity
consensus is achieved as indicated by perr approaching to zero.

Table I and Figure 4 are depicted to visualize the performance of our proposed control strategy.
Let us first stress that the MPC method has advantages in convergence efficacy of flocking by com-
paring the convergence speed of Olfati-Saber’s flocking method [8] with Zhang et al. flock MPC
[30] and the present distributed MPC strategy(22) in Figure 4. And this advantage has been explic-
itly described and illustrated in [30, 34]. Here, our proposed control strategy has two remarkable
advantages: (i) Less local information is used to achieve the flock of the MAS via neighbor screen-
ing mechanism, that is, each agent screens its neighbor set and only collects the information of a
part of its neighbors and itself to accomplish the optimization in proposed distributed MPC strat-
egy, which is shown in Table I where jN�i j is always less than or equal to jNi j (i D 1; 8; 17; 31; 40)
at arbitrarily selected sampling instant k D 1; 20; 50 and (ii) The convergence efficacy is sub-
stantially improved by distributed MPC method and neighbor screening mechanism as shown in
Figure 4 where we compare the convergence speed of Olfati-Saber’s flocking method [8] and Zhang
et al. flock MPC [30] with our proposed control strategy.

We also recognize that the proposed control strategy still needs to be improved. In Figure 4(a),
although the stable value of lattice disagreement by the present strategy is less than the allowable
error ı D 0:7.0:1d/, it is larger than the stable value by using Olfati-Saber’s flocking method
[8] or Zhang et al. flock MPC [30]. This means the quasi ˛-lattice structure obtained by our pro-
posed strategy is less rigid. The possible reason is that less local information is used through the
flocking process, and is thus ongoing research. But achieving the approximate flocks by using less
neighbors’ information has practical meanings when considering the constrained energy, delay in
communication and computation capability in actual environment.
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Figure 4. Comparison of trajectory evolution of lattice disagreement qerr and velocity disagreement perr
of the multi-agent system (MAS) under three different control protocols, that is, Olfati-Saber’s flocking
method [8], Zhang et al. flock model predictive control (MPC) [30] and the present strategy (22). [Colour

figure can be viewed at wileyonlinelibrary.com]

6. CONCLUSION

In this paper, we have presented a distributed MPC strategy to achieve the flocks: quasi ˛-lattice
structure via neighbor screening mechanism. At each sampling instant, all agents optimize their
plans by screening their neighbors and collect the information in their screened subsystems for
receding horizon optimization. We have theoretically guaranteed that the proposed control strategy
leads to flock with inter-agent collision avoidance by using the geometric properties of the optimal
path. The performance and the characteristic of proposed control strategy have been verified by a
number of simulations. Open research topics to explore may include improving the rigidity of the
flocks and taking practical applications into account such as goal seeking, obstacle avoidance, and
multi-robot coordination.
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