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Abstract: This study proposes a distributed model predictive control (MPC) strategy to achieve consensus of sampled-data
multi-agent systems with double-integrator dynamics. On the basis of the error of state between each agent and the centre
of its subsystem, a novel distributed MPC strategy (Algorithm 1) is obtained with the exchange of current states only. Then,
a reverse iterative algorithm (Algorithm 2) is specially designed for the receding horizon optimisation of sampled-data
double-integrator dynamics. Illustrative examples are finally displayed to verify the effectiveness and advantage of the
distributed MPC consensus strategy and the impact of sampling period on consensus.
1 Introduction

In recent years, many brilliant achievements have been obtained for
the collective behaviours of multi-agent systems (MASs), which
have vivid examples in biology, physics, computer science, auto-
matic control and distributed cooperative systems (see, e.g. [1–5]).
The effective way to solve problems of MASs is to explore decen-
tralised control strategies arising from local interactions among
agents to guarantee that all agents agree upon certain quantities
of interest, called consensus [6–10]. Such cooperative consensus
strategies have potential impacts on many fields, such as flock-
ing/swarming, sensor network, collaborative robots, underwater
vehicles, unmanned aerial vehicles (UAVs), formation control and
congestion control in communication networks.

So far, in most of previous consensus schemes, each agent is
only available to observe the behaviours of its neighbours cur-
rently and then takes a timely decision without consideration of the
prediction intelligence of each individual. However, abundant refer-
ences in the biology literature have presented that almost all living
creatures apply the prediction intelligence allowing them to predict
the future state of their neighbours and themselves in coopera-
tive work [11, 12]. Examples about this prediction intelligence are
vividly reflected in bee swarm formation [11], bio-eyesight systems
[12] and so on. Such predictive mechanisms with the capabilities
of optimising system energy and control cost have attracted many
researchers to apply these alluring features in the study of MASs.

For agents have a discrete-time single- or double-integrator
dynamics, Ferrai-Trecate et al. [13] proposed decentralised model
predictive control (MPC) schemes with control input constraints
and shown that such a MAS asymptotically achieves consen-
sus under mild assumptions. For the proof of convergence, the
geometric properties of the optimal paths are utilised instead of
a Lyapunov optimal value function. Following this line, Zhang
et al. [14] proposed an MPC strategy to achieve consensus and
numerical simulation has verified the performance of consensus.
Furthermore, inspired by some efficient schemes in pinning con-
trol, they have presented an improved control strategy with faster
convergence speed in [15]. Afterwards, for a sampled-data MAS
with both fixed and switching network topologies, Zhan and Li
in [16] have introduced a distributed MPC weighted-average con-
sensus protocol and proved such a MAS asymptotically reaches
the weighted-average consensus. Although such an outstanding
work introduces the sampled-data network, it focuses on one-order
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integrator dynamics which are easier and less common than double-
integrator dynamics in the industrial community. Moreover, the
cost of communication and computation increases because of the
additional exchange of computed inputs and the final computa-
tion in this distributed MPC weighted-average consensus protocol.
In summary, discrete dynamics have been adopted directly in
[13–15], which have lower applicability than sampled-data dynam-
ics where sampling period has potential impacts on the per-
formances of these systems. In [16], only one-order integrator
dynamic has been discussed and more cost of communication and
computation has been brought.

In short, designing a distributed MPC strategy with opti-
mal energy for consensus of sampled-data MASs with double-
integrator dynamics is still a challengeable work. In this paper,
our main contributions include: (a) a novel distributed MPC strat-
egy (Algorithm 1), based on the error of state between each agent
and the centre of its subsystem, is obtained by merely exchanging
the current states only; (b) in order to find the solution of receding
horizon optimisation of sampled-data double-integrator dynamics,
a reverse iterative algorithm (Algorithm 2) is proposed; and (c)
the performance of the distributed MPC consensus strategy and the
impact of sampling period on consensus are illustratively displayed.

The rest of this paper is organised as follows. Section 2 intro-
duces some necessary preliminaries. In Section 3, we propose
a distributed MPC strategy for sampled-data MAS with double-
integrator dynamics and prove the asymptotical convergence of the
MAS. Illustrative examples showing the performance of our pro-
posed distributed MPC strategy are presented in Section 4. Finally,
conclusions are drawn in Section 5.

2 Preliminaries

We first introduce the following notations and definitions to use
throughout this paper. 1 = [1, 1, . . . , 1]T, 0 = [0, 0, . . . , 0]T. Matrix
I m represents the identify matrix with dimension m. The notations
N

+, R
+, N and R denote the sets of positive integers, positive

numbers, natural numbers and real numbers, respectively. The def-
initions R

m, R
mn and R

n×n denote the sets of m-dimensional real
column vectors, mn-dimensional real column vectors and n × n-
dimensional real matrices, respectively. ‖·‖ indicates the Euclidean
norm and ⊗ indicates the Kronecker product. The definition
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© The Institution of Engineering and Technology 2015



∗(k + t|k) denotes the prediction value ∗ at instant k + t based
on the currently available information at instant k .

Consider a MAS composed of n agents. It can be
abstractly described as a weighted graph denoted by G =
(V , E, A), consisting of a set of vertices V = {1, 2, . . . , n}, edges
E ⊆ {(i, j) : i, j ∈ V , j �= i}, and a weighted adjacency matrix A =
[aij]n×n with non-negative adjacency elements aij . If (i, j) ∈
E ⇐⇒ (j, i) ∈ E, we call the graph G is undirected and
we only consider undirected graph in this paper. If there
exist a sequence of edges (i, k1), (k1, k2), . . . , (ks−1, ks), (ks, j),
kt ∈ V , t = 1, . . . , s between any two vertices i, j ∈ V , the undi-
rected graph G is connected. The neighbour set of agent i
is denoted by Ni = {j ∈ V : (i, j) ∈ E} and |Ni| denotes the
number of the neighbours of agent i. The Laplacian matrix
Ln = [lij]n×n associated with G is defined as, lij = −aij , i �= j, and
lii = ∑n

j=1,j �=i aij .
Let xi ∈ R

m and x = col[x1, x2, . . . , xn] ∈ R
mn indicate the state

of agent (node) i and the state of the MAS, respectively. The
consensus of the MAS is reached if and only if

xi = xj , ∀i, j ∈ {1, 2, . . . , n} (1)

3 Consensus via distributed MPC method

Consider that a MAS with undirected topology G is composed of
n agents. Each agent of the MAS, as each vertex of G, follows the
same double-integrator dynamic as below

q̇i(t) = pi(t)

ṗi(t) = ui(t), i = 1, 2, . . . , n (2)

where qi(t) ∈ R
m and pi(t) ∈ R

m denote the position and veloc-
ity of the ith agent at time t, respectively. And ui(t) ∈ R

m

is the corresponding control input. Using the forward-difference
approximation, we discretise (2) as

qi(k + 1) = qi(k) + Tpi(k)

pi(k + 1) = pi(k) + Tui(k) (3)

where T indicating the sampling period, is a small positive con-
stant. k indicates the discrete-time index. qi(k) ∈ R

m, pi(k) ∈ R
m

and ui(k) ∈ R
m denote, respectively, the position, velocity and

the control input of agent i at t = kT . Following (1), we obtain
consensus is reached if and only if

lim
k→∞

‖qi(k) − qj(k)‖ = 0

lim
k→∞

‖pi(k) − pj(k)‖ = 0, ∀i, j ∈ {1, 2, . . . , n} (4)

Next, we first introduce the common method to obtain MPC input
u∗

i (k) for agent i at instant k . Rewrite the discrete-time double-
integrator model (3) in a compact way

xi(k + 1) = Axi(k) + Bui(k), i = 1, 2, . . . , n (5)

with xi(k) = col[qi(k), pi(k)] and

A = Im ⊗
(

1 T
0 1

)
, B = Im ⊗

(
0
T

)

Following some basic rules from MPC, we compute the prediction
states xi(k + t|k), (t = 1, 2, . . . , Hp):

xi(k + t|k) = Axi(k + t − 1|k)

+ Bui(k + t − 1|k), t < Hu (6)

xi(k + t|k) = Axi(k + t − 1|k)

+ Bui(k + H u − 1|k), t ≥ Hu (7)

with X i(k) = col[xi(k + 1|k), xi(k + 2|k), . . . , xi(k + H p|k)],
U i(k) = col[ui(k|k) and ui(k + 1|k), . . . , ui(k + H u − 1|k)].
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Here, integers Hp, Hu denote prediction horizon and control hori-
zon, respectively, with 1 ≤ Hu ≤ Hp. Thus (6) and (7) can be
rewritten in a compact way as

X i(k) = Pxxi(k) + PuU i(k)

with Px = col[A, A2, . . . , AH p ] and

Pu =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B

AB
. . .

...
... B

AH u−1B . . . AB B
... . . .

...
...

AH p−1B . . . AH p−H u+1B
∑Hp−Hu

i=0 AiB

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then, we definite the MPC cost function for agent i as

Ji(k) = ‖Pxxi(k) + PuU i(k) − ri(k)‖2
�i

+ ‖U i(k)‖2
�i

(8)

where �i and �i represent associated state-weighted matrix
with an appropriate dimension and control-weighted matrix
with an appropriate dimension, respectively. ri(k) denotes
the reference signal. Optimising the MPC cost function
by using [{∂Ji(k)}/{∂U i(k)}], we obtain the optimal input
sequence: U∗

i (k) = −(PT
u�iPu + �i)

−1PT
u�i(Pxxi(k) − ri(k)).

Usually, we use the first entry of U∗
i as the actual control sig-

nal, that is, u∗
i (k) = −[1, 1, . . . , 1︸ ︷︷ ︸

m

, 0, 0, . . . , 0] × U∗
i (k). Denoting

ϕi = [1, 1, . . . , 1︸ ︷︷ ︸
m

, 0, 0, . . . , 0] × (PT
u�iPu + �i)

−1PT
u�i , we have

the optimal MPC input

u∗
i (k) = −ϕi(Pxxi(k) − ri(k)) (9)

where the vector ϕi is independent of xi(k) and thus can be
calculated offline.

Remark 1: By optimising the MPC cost function (8) associated
with prediction and control horizons, we have obtained the optimal
MPC input. Inspired by this rolling or receding horizon optimisa-
tion strategy, we will design the distributed MPC input to better
adapt to the MAS (3) afterwards.

Note that each agent can only get information from its neigh-
bours, we decompose the whole network consisting of n agents
into n subsystems accordingly. For agent i, its subsystem consists
of itself and its neighbours, indicated by δi = {ni

1, ni
2, . . . , ni|Ni |+1},

ni
1 < ni

2 < · · · < ni|Ni |+1, ni
j ∈ Ni ∪ i, j = 1, 2, . . . , | Ni | +1. Con-

sidering the interactions among agents in each subsystem, we define
the distributed MPC cost function for agent i with position and
velocity state separated in the following form

Ji(k) = α

Hp∑
t=1

‖(qi(k + t|k) − rq
i (k + t|k)‖2

+ β

Hp∑
t=1

‖(pi(k + t|k) − rp
i (k + t|k)‖2

+ λ

Hu−1∑
t=0

‖(ui(k + t|k)‖2 (10)

with α, β, λ ∈ R
+, t ∈ N. rq

i (k + t|k) ∈ R
m and rp

i (k + t|k) ∈ R
m

denoting, respectively, the position and velocity vector references,
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are defined as below

rq
i (k + t|k) = 1

| Ni | +1

∑
j∈δi

qj(k) + t × T × rp
i (k + t|k)

rp
i (k + t|k) = 1

| Ni | +1

∑
j∈δi

pj(k) ∀i, j ∈ V ,

t = 0, 1, 2, . . . , Hp (11)

In fact, the references rq
i (k + t|k) and rp

i (k + t|k) describe the cen-
tre of the state of i′ subsystem. Moreover, agent i, resolves its
actual control input ui(k) following the distributed MPC consensus
algorithm described as below:

Algorithm 1: Step 1: Agent i receives feasible states qj(k), pj(k)
for agent j which has not yet calculated its optimal input or opti-
mal states q∗

j (k), p∗
j (k) for agent j which already has calculated

its optimal input from its neighbours at instant k . Then agent i
computes its references rq

i (k) and rp
i (k) at instant k .

Step 2: Agent i optimises the distributed MPC cost function
(10), and denotes its optimal control input by u∗

i (k) and the
corresponding states by q∗

i (k), p∗
i (k).

Step 3: Agent i sends its optimal states q∗
i (k), p∗

i (k) to its neigh-
bours, facilitating them to calculate the references and solve the
optimisation problems of their own.

Step 4: Agent i applies ui(k) := u∗
i (k) as its actual control input

at instant k .

Remark 2: Compared with previous distributed MPC consensus in
[16], where each agent receives the information of its neighbours
directly as well as the information of its neighbours’ neighbours
indirectly, the distributed protocol proposed in this paper, similar
to the protocols in [13, 15], requires the exchange of current states
only, which brings less cost of communication and computation.

Before giving the optimal distributed MPC control input, we
need some necessary lemmas below.

Lemma 1: Given a polynomial with respect to parameters e, f , d
in the following form

h∑
i=1

(α(e + iTf )2 + β(f + iTd)2) + λd2 (12)

with scalars α, β, λ ∈ R
+, h ∈ N

+. Moreover, T is a small positive
constant. Then, by polynomial transform, polynomial (12) can be
written as

b(d + ce + c̆f )2 + ᾰe2 + β̆f 2 + γ̆ ef (13)

where b > 0, c = 0, c̆ > 0, ᾰ > 0, β̆ > 0 and γ̆ > 0.

Proof: As for polynomial equation

h∑
i=1

(α(e + iTf )2 + β(f + iTd)2) + λd2

= b(d + ce + c̆f )2 + ᾰe2 + β̆f 2 + γ̆ ef

Using coefficient comparison to calculate the related scalars, we
obtain b = (βT 2 ∑h

i=1 i2 + λ) > 0, c = 0, c̆ = βT/b
∑h

i=1 i > 0,
1776
ᾰ = α > 0

β̆ = αT 2
h∑

i=1

i2 + β − bc̆2

= αT 2
h∑

i=1

i2 + β − (βT
∑h

i=1 i)2

b

= β + αλT 2 ∑h
i=1 i2

b

+ αβT 4(
∑h

i=1 i2)2 − β2T 2(
∑h

i=1 i)2

b

Considering T is a small positive constant, we obtain β̆ � β > 0
and γ̆ = 2αT

∑h
i=1 i > 0. Thus the proof is simply completed. �

Lemma 2: Given a polynomial with respect to parameters e, f , d
in the following form

α(e + Tf )2 + β(f + Td)2 + λd2 + α∗(e + Tf )2

+ β∗(f + Td)2 + γ∗(e + Tf )(f + Td) (14)

with scalars α, β, λ, α∗, β∗, γ∗ ∈ R
+. Moreover, T is a small

positive constant. Then, by polynomial transform, polynomial (14)
can be written as

b(d + ce + c̆f )2 + ᾰ∗e2 + β̆∗f 2 + γ̆∗ef (15)

where b > 0, c > 0, c̆ > 0, ᾰ∗ > 0, β̆∗ > 0, γ̆∗ > 0.

Proof: As for polynomial equation

α(e + Tf )2 + β(f + Td)2 + λd2

+ α∗(e + Tf )2 + β∗(f + Td)2 + γ∗(e + Tf )(f + Td)

= b(d + ce + c̆f )2 + ᾰ∗e2 + β̆∗f 2 + γ̆∗ef

Using coefficient comparison to calculate the related scalars, we
obtain b = (T 2(β + β∗) + λ) > 0, c = Tγ∗/2b > 0, c̆ = (2T (β +
β∗) + T 2γ∗)/2b > 0

ᾰ∗ = α + α∗ − bc2

= α + α∗ − T 2γ 2∗
4b

Considering T is a small positive constant, we obtain ᾰ∗ � α +
α∗ > 0. Similarly, β̆∗ = (α + α∗ + T 2(β + β∗) + Tγ∗ − bc̆2) > 0
and γ̆∗ = (2T (α + α∗) + γ∗ − 2bcc̆) > 0. Thus the proof is simply
completed. �

Lemma 3: Given an equation with respect to parameters et , ft ,
ut ∈ R:

J = α

Hp∑
t=1

e2
t + β

Hp∑
t=1

f 2
t + λ

Hu−1∑
t=0

u2
t (16)

with α, β, λ ∈ R
+, Hu, Hp ∈ N

+, t ∈ N and 1 ≤ Hu ≤ Hp. If there
exists a small positive constant T and et , ft , ut ∈ R fulfil:

(1) et = et−1 + Tft−1, t = 1, 2, . . . , Hp;
(2) ft = ft−1 + Tut−1, t = 1, 2, . . . , Hp;
(3) ut = uHu−1, Hu ≤ t ≤ Hp;
(4) e0, f0 ∈ R.

then by optimising J , ut has the concise form

ut = −ctet − c̆t ft , t = 0, 1, . . . , Hu − 1 (17)

where ct , c̆t ∈ R
+ and their values depend on Hp, Hu and the small

positive constant T .
IET Control Theory Appl., 2015, Vol. 9, Iss. 12, pp. 1774–1780
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Proof: On the basis of conditions (1)–(4) above, it is obvious that

et+1 = et + Tft (18)

ft+1 = ft + Tut (19)

Considering Hu ≤ t ≤ Hp, we also have

eHu+τ−1 = eHu−1 + τTfHu−1 (20)

fHu+τ−1 = fHu−1 + τTuHu−1 (21)

with τ = t − Hu + 1.
Then, a reverse iterative algorithm described as below is utilised

to accomplish the proof.

Algorithm 2: Step 1: Rewrite (16) as

J = J1 + J2 + · · · + JHu−1 + JHu (22)

where

Jt = αe2
t + βf 2

t + λu2
t−1, t = 1, 2, . . . , Hu − 1 (23)

JHu = α

h∑
τ=1

e2
Hu+τ−1 + β

h∑
τ=1

f 2
Hu+τ−1 + λu2

Hu−1 (24)

with h = Hp − Hu + 1.

Step 2: By Lemma 1, substitute (20) and (21) into (24) to obtain
that

JHu = bHu (uHu−1 + cHu−1eHu−1 + c̆Hu−1fHu−1)
2

+ ᾰHu−1e2
Hu−1 + β̆Hu−1f 2

Hu−1 + γ̆Hu−1eHu−1fHu−1

with bHu = (βT 2 ∑h
τ=1 τ 2 + λ) > 0, cHu−1 = 0, c̆Hu−1 = βT/bHu∑h

τ=1 τ > 0, ᾰHu−1 = α > 0, β̆Hu−1 = (αT 2 ∑h
τ=1 τ 2 + β − bHu

c̆2
Hu−1) > 0 and γ̆Hu−1 = 2αT

∑h
τ=1 τ > 0.

Step 3: By Lemma 2, substitute (18) and (19) into (23) and the
equation ᾰe2

t + β̆f 2
t + γ̆tet ft to obtain that

Jt + ᾰe2
t + β̆f 2

t + γ̆tet ft

= bt(ut−1 + ct−1et−1 + c̆t−1ft−1)
2

+ ᾰt−1e2
t−1 + β̆t−1f 2

t−1 + γ̆t−1et−1ft−1

with bt = (T 2(β + β̆t) + λ) > 0, ct−1 = T γ̆t/2bt > 0, c̆t−1 =
(2T (β + β̆t) + T 2γ̆t)/2bt > 0, ᾰt−1 = (α + ᾰt − btc2

t−1) > 0,
β̆t−1 = (α + ᾰt + T 2(β + β̆t) + T γ̆t − bt c̆2

t−1) > 0 and γ̆t−1 = (2T
(α + ᾰt) + γ̆t − 2btct−1c̆t−1) > 0.

Moreover, implement this process from t = Hu − 1 to t = 1.
Thus though these three steps in Algorithm 2, (16) can be

rewritten as

J =
Hu∑
t=1

bt(ut−1 + ct−1et−1 + c̆t−1ft−1)
2 + C (25)

where C = ᾰ0e2
0 + β̆0f 2

0 + γ̆0e0f0 ∈ R, and it is calculated by Step
3 in Algorithm 2. Thereby, it is clear that J attains its minimum
when ut = −ctet − c̆t ft , t = 0, 1, . . . , Hu − 1, with scalars ct , c̆t ∈
R

+. Usually, we use the first step of ut as actual control signal,
that is, u0 = −c0e0 − c̆0f0. The proof is thus completed. �

Remark 3: In fact, we use reverse iterative algorithm (Algorithm 2)
to obtain (25) starting from JHu and ending with J1. In this iteration
IET Control Theory Appl., 2015, Vol. 9, Iss. 12, pp. 1774–1780
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process, we can get those positive constant scalars bt+1, ct , c̆t (t =
0, 1, . . . , Hu − 1) one by one. As the scalars ct and c̆t are obtained
by the optimisation process, so the associated energy cost of the
MAS are minimal, which will be illustratively verified in Section 4.

Lemma 4: By optimising the associated distributed MPC cost func-
tion Ji(k), defined as (10), the distributed MPC input ui(k) can be
equivalently written as the following from

ui(k) = −ci0(qi(k) − 1

| Ni | +1

∑
j∈δi

qj(k))

− c̆i0(pi(k) − 1

| Ni | +1

∑
j∈δi

pj(k)) (26)

where ci0, c̆i0 ∈ R
+ are dependent on Hp, Hu and the small positive

constant T .

Proof: On the basis of the definition of references in (11) and the
basic rules (6), (7) from MPC, it is clear that

qi(k + t|k) − rq
i (k + t|k)

= qi(k + t − 1|k) − rq
i (k + t − 1|k)

+ T (pi(k + t − 1|k) − rp
i (k + t − 1|k)),

1 ≤ t ≤ Hp

and

pi(k + t|k) − rp
i (k + t|k)

= pi(k + t − 1|k) − rp
i (k + t − 1|k)

+ Tui(k + t − 1|k), 1 ≤ t < Hu

pi(k + t|k) − rp
i (k + t|k)

= pi(k + t − 1|k) − rp
i (k + t − 1|k)

+ Tui(k + H u − 1|k), Hu ≤ t ≤ Hp

Note that, as for a given vector, each element of which is inde-
pendent. Thus the relations among the corresponding elements
of vectors qi(k + t|k) − rq

i (k + t|k), pi(k + t|k) − rp
i (k + t|k) and

ui(k + t|k) satisfy conditions (1)–(3) in Lemma 3. The elements
of vectors qi(k|k) − rq

i (k|k) and pi(k|k) − rp
j (k|k) satisfy condi-

tion (4). Optimising the associated distributed MPC cost function
Ji(k) and following the reverse iterative algorithm (Algorithm 2)
in Lemma 3, we obtain

ui(k + t|k) = −cit(qi(k + t|k) − rq
i (k + t|k))

− c̆it(pi(k + t|k) − rp
i (k + t|k))

where cit , c̆it(0 ≤ t ≤ Hu − 1), can be calculated in detail in
Algorithm 2. Usually, we use the first step of ui(k + t|k) as the
actual control signal

ui(k) = −ci0(qi(k) − 1

| Ni | +1

∑
j∈δi

qj(k))

− c̆i0(pi(k) − 1

| Ni | +1

∑
j∈δi

pj(k))

where ci0, c̆i0 ∈ R
+ are dependent on Hp, Hu and the small positive

constant T . The proof is thus completed. �

By far, as for each subsystem, we have obtained the distributed
MPC input ui(k). Next, we first add some necessary assumption to
guarantee the global consensus of the MAS (3) with the distributed
MPC input ui(k).
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Assumption 1: Assume that the undirected graph G used in this
paper is connected. Moreover, if (i, j) ∈ E, aij = 1, else aij = 0.

Then, we give the main results as below.

Theorem 1: Consider the MAS (3) with the network topology G,
the consensus is achieved asymptotically if the distributed MPC
input ui(k) is applied.

Proof: Denote the position and velocity of the centre of mass
(COM) of all agents in the group as q̄(k) = (1/n)

∑n
i=1 qi(k)

and p̄(k) = (1/n)
∑n

i=1 pi(k), respectively. Moreover, define the
position difference and the velocity difference between agent i
and the COM as q̃i(k) = qi(k) − q̄(k) and p̃i(k) = pi(k) − p̄(k),
respectively. Then, substituting (26) into the MAS(3), we obtain

q̃i(k + 1) = q̃i(k) + T p̃i(k)

p̃i(k + 1) = p̃i(k) − Tci0(q̃i(k) − 1

| Ni | +1

∑
j∈δi

q̃j(k))

− T c̆i0(p̃i(k) − 1

| Ni | +1

∑
j∈δi

p̃j(k))

For notational convenience, we also define

Q̃(k) = col[q̃1(k), q̃2(k), . . . , q̃n(k)]
P̃(k) = col[p̃1(k), p̃2(k), . . . , p̃n(k)],

C0 = diag

(
c10

| N1 | +1
,

c20

| N2 | +1
, . . . ,

cn0

| Nn | +1

)

C̆0 = diag

(
c̆10

| N1 | +1
,

c̆20

| N2 | +1
, . . . ,

c̆n0

| Nn | +1

)

Following Lemma 3, we obtain ci0, c̆i0 ∈ R
+, i = 1, 2, . . . , n.

Therefore C0 and C̆0 are positive definite diagonal matrices.
Consider the Lyapunov function candidate

Ṽ (k) = Ṽ (Q̃(k), P̃(k))

= 1

2
Q̃(k)

T
(I m ⊗ (C0Ln))TQ̃(k) + 1

2
P̃(k)

T
P̃(k) (27)

with Ln ∈ R
n×n as the Laplacian matrix associated with undirected

graph G. By Assumption 1, the matrix Ln has exactly one zero
eigenvalue with an associated eigenvector 1 and all other eigenval-
ues with positive real parts [17]. Therefore the Lyapunov function
candidate is positive definite with respect to Q̃(k) and P̃(k).

The derivative of Ṽ (k) along the trajectories of the agents is
given by

Ṽ (Q̃(k + 1), P̃(k + 1)) − Ṽ (Q̃(k), P̃(k))

= Q̃(k)
T
(I m ⊗ (C0Ln))T(Q̃(k + 1) − Q̃(k))

+ P̃(k)
T
(P̃(k + 1) − P̃(k))

= T P̃(k)
T
(I m ⊗ (C0Ln))Q̃(k)

+ P̃(k)
T
(−T (I m ⊗ (C0Ln))Q̃(k)

− T (I m ⊗ (C̆0Ln)P̃(k))

= −T P̃(k)
T
(I m ⊗ (C̆0Ln))P̃(k) ≤ 0.

We thus obtain Ṽ (k) ≤ Ṽ (0) < ∞. So Ṽ (k) is bounded. Therefore
‖Q̃(k)‖ and ‖P̃(k)‖ are also bounded. It then follows from the
LaSalle Invariance Principle [18] that all trajectories of the agents
converge to the largest invariant set inside the region

S = {[Q̃(k)
T

, P̃(k)
T]T ∈ R

2mn : Ṽ (k + 1) − Ṽ (k) = 0}
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The proof is omitted because of the page limitation and its similar-
ity with the proof of Theorem 4.1 in [19]. Ṽ (k + 1) − Ṽ (k) = 0, if
and only if P̃(k) = 0. That is p1(k) = p2(k) = · · · = pn(k) = p̄(k),
which implies that the velocities of all agents will converge to the
velocity of the COM asymptotically. Obviously, the derivative of
P̃(k) is also equal to 0. Then note that

P̃(k + 1) − P̃(k) = −T (I m ⊗ (C0Ln))Q̃(k)

− T (I m ⊗ (C̆0Ln))P̃(k)

we thus have Q̃(k) = 0. That is q1(k) = q2(k) = · · · = qn(k) =
q̄(k), which suggests that the positions of all agents will also con-
verge to the position of the COM asymptotically. So far, we have
completed the proof. �

Remark 4: As for the directed topology, the consensus of the MAS
with the distributed MPC input ui(k) may not be guaranteed. How-
ever, the Laplacian matrix of the undirected topology which is
connected and the non-symmetric Laplacian matrix of the directed
topology which is strongly connected and balanced have the simi-
lar characteristics (see more details in [17]). Therefore the results
in Theorem 1 can be extended to the directed graph case if it is
strongly connected and balanced.

Fig. 1 Illustration of the five-UAV MAS

Fig. 2 Moving trajectories (positions) evolution of the MAS
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Fig. 4 Impact of sampling period on consensus of the MAS

4 Illustrative examples

We present illustrative examples in this section to verify the
effectiveness of the proposed distributed MPC consensus strategy.
Consider a five-UAV MAS in Fig. 1 following dynamics (3) with
distributed MPC input ui(k). Five UAVs, each endowed with an
engine and dynamically coupled in a two-nearest neighboured way
(the dashed line represents the transmission of information between
two UAVs in Fig. 1), are tasked to accomplish the space dock-
ing mission simultaneously. Obviously, the topology in Fig. 1
satisfies Assumption 1. The UAVs are all flying at distinct, preas-
signed altitudes to avoid collision as they perform docking mission.
Despite its simplicity, this example is of significant interest since
it contains almost all the ingredients of a distributed control prob-
lem: dynamic coupling between subsystems (each UAV and its
neighbours), modularity and collective behaviours.

The initial planar positions and velocities of five UAVs: qi(0),
pi(0) ∈ R

2, i = 1, 2, 3, 4, 5 are randomly chosen from the boxes:
[−100, 100] × [−100, 100] and [−2, 2] × [−2, 2], respectively.
The scalars α = β = λ = 1. Moreover they all remain fixed
throughout all simulations in this section. Then, we display Table 1
IET Control Theory Appl., 2015, Vol. 9, Iss. 12, pp. 1774–1780
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Fig. 5 Total energy of the MAS in an optimisation process at instant k

as below to show the values of ct , c̆t (t = 0, 1, . . . , Hu − 1) which
we will use later and the computation time tc associated with
prediction horizon Hp, control horizon Hu and sampling period T .

To visualise the performance of the five-UAV MAS with dis-
tributed MPC consensus strategy, we plot trajectories (positions)
and velocities of all the agents with {Hp = 10, Hu = 1, T = 0.1 s}
in Figs. 2 and 3, respectively. It is visualised that the velocities
achieve consensus while positions converge to a same manifold,
and hence the consensus of the MAS is guaranteed.

Moreover, the trajectory of Lyapunov function Ṽ (k) is plotted
in Fig. 4 to illustrate the impact of sampling period T on consen-
sus. When we choose sampling period T from 0.1 to 0.606 s with
{Hp = 20, Hu = 2}, the trajectories of Ṽ (k) indicate that only a
suitable range of sampling periods can guarantee the consensus of
the MAS. If sampling period is not in the suitable range, for exam-
ple, T ≥ 0.606 s, the consensus of the MAS is totally broken. This
is the reason why we have always emphasised that the sampling
period T is a small positive constant before.

Next, we plot the total energy of the MAS J (k) := ∑N
i=1 Ji(k)

with Ji(k) defined in (10) in an optimisation process at instant k to
show the advantage of our distributed MPC strategy in Fig. 5. The
Fig. 3 Velocities evolution of the MAS
Table 1 Values of ct , c̆t (t = 0, 1, . . . , Hu − 1) and the computation time tc

Hp Hu T , s c0 c̆0 c1 c̆1 c2 c̆2 . . . . . . tc, s

10 1 0.1 0.0156 0.1153 ∗ ∗ ∗ ∗ ∗ ∗ 0.034
20 2 0.1 0.0070 0.1070 0.0081 0.1080 ∗ ∗ ∗ ∗ 0.042
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coefficient set {ct , c̆t} with {Hp = 10, Hu = 1, T = 0.1 s} in Table 1,
is applied to plot the path J ∗(k). On the other hand, Ja(k) is plotted
when an arbitrary coefficient set {c0 = 0.02, c̆0 = 0.2} is selected.
It is observed that the total energy consumption associated with
the coefficient set in Table 1 is always less than it associated with
the arbitrary coefficient set in an optimisation process. Thus the
proposed distributed MPC consensus strategy has more advantages
in terms of energy consumption.

5 Conclusion

In this paper, we have presented a distributed MPC strategy to
analyse the consensus of sampled-data MAS with double-integrator
dynamics, of which the convergence proof has been given for net-
work with undirected topology. Such a distributed MPC strategy,
based on the error of state between each agent and the centre of
its subsystem, is acquired by reverse iterative algorithm which is
specially designed for receding horizon optimisation of sampled-
data double-integrator dynamics. The performance of our proposed
distributed MPC strategy and the impact on system’s consensus of
the sampling period have also been verified illustratively.
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