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Abstract— We introduce and study the problem of planning
a trajectory for an agent to carry out a scouting mission
while avoiding being detected by an adversarial guard. This
introduces a multi-objective version of classical visibility-based
target search and pursuit-evasion problem. In our formulation,
the agent receives a positive reward for increasing its visibility
(by exploring new regions) and a negative penalty every time
it is detected by the guard. The objective is to find a finite-
horizon path for the agent that balances the trade off between
maximizing visibility and minimizing detectability.

We model this problem as a discrete, sequential, two-
player, zero-sum game. We use two types of game tree search
algorithms to solve this problem: minimax search tree and
Monte-Carlo search tree. Both search trees can yield the optimal
policy but may require possibly exponential computational time
and space. We propose several pruning techniques to reduce the
computational cost while still preserving optimality guarantees.
Simulation results show that the proposed strategy prunes
approximately three orders of magnitude nodes as compared
to the brute-force strategy. We also find that the Monte-Carlo
search tree saves approximately one order of computational
time as compared to the minimax search tree.

I. INTRODUCTION

Planning for visually covering an environment is a widely
studied problem in robots with many real-world applications,
such as environmental monitoring [1], precision farming [2],
ship hull inspection [3], and adversarial multi-agent track-
ing [4]. The goal is typically to find a path for an agent to
maximize the area covered within a certain time budget or
to minimize the time required to visually cover the entire
environment. The latter is known as the Watchman Route
Problem (WRP) [5] and is closely related to the Art Gallery
Problem (AGP) [6]. The goal in AGP is to find the minimum
number of cameras required to see all points in a polygonal
environment. In this paper, we extend this class of visibility-
based coverage problems to adversarial settings.

We consider scenarios where the environment also con-
tains a guard that is actively (and adversarially) searching for
the agent (Figure 1). The agent, on the other hand, is tasked
with covering the environment while avoiding detection by
the guard. This models stealth reconnaissance missions. We
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(a) Explore an environment. (b) Reach a target point.

Fig. 1. Two example missions. Maximizing visibility implies maximizing
the total reward collected along a finite horizon path while minimizing
detectability can be achieved by avoiding the grid cells from where the
agent can be seen. Both types of mission can be formulated by assigning
different reward functions over a grid-based map.

consider the version where there is a finite time horizon
within which the agent must complete its mission. The
objective of the agent is to maximize the total area covered
within the given horizon while at the same time minimize
the number of times it is detected by the guard.

We adopt a game-theoretic approach for this problem
where the agent maximizes the total reward collected and
the guard minimizes the total reward. The total reward is
a weighted combination of positive and negative rewards.
The positive reward depends on the specific task at hand.
For example, when the task is to scout an environment
(Figure 1(a)), the positive reward can be the total area that
is scanned by the agent along its path. When the task is
to reach a goal position (Figure 1(b)), the positive reward
can be the function of the distance to the goal. The agent
receives a negative reward whenever it is detected by the
guard. The negative reward can also be defined based on
the specific application. In this paper, we consider the case
where the agent receives a fixed negative reward every time it
is detected by the agent. However, other models (e.g., time-
varying negative rewards) can be easily incorporated. The
total reward is a combination of the two reward functions.

This problem is a new variant of the classical pursuit-
evasion problems [7]. Our approach is closer to the visibility-
based [8], [9] pursuit-evasion games. However, the main
distinction is that in classical pursuit-evasion games, the goal
of the evader (i.e., the agent in our setting) is to always evade
the pursuer (i.e., the guard) whereas in our setting, the agent
has to explore the environment to increase its visibility while
at the same time staying away from the guard.

Broadly speaking, the proposed problem is a combination
of classical pursuit-evasion games and visibility-based rout-
ing such as the WRP (where the objective is to minimize
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the time required to observe the environment) [10]. Here,
we combine the two tasks albeit for discrete environments.
Furthermore, the definition of winning a game is different
from the conventional pursuit-evasion games. In general,
the pursuer wins the game if the distance between the
pursuer and evader becomes less than a threshold [11], or
if the evader is surrounded by the pursuer [12]. In our
case, however, the goal is not only to capture or to avoid
detection by the other player, but also to maximize the area
explored, which has not been considered in conventional
pursuit-evasion games.

We abstract the underlying geometry and model the prob-
lem as a discrete, sequential, two-player, zero-sum game.
Minimax tree search [13] and Monte-Carlo Tree Search
(MCTS) [14] are well-known algorithms to solve discrete,
two-player, zero-sum games. Both techniques build a search
tree that contains all possible (or a subset of all possible) ac-
tions for both players over planning horizons. In general, the
search tree will have size that is exponential in the planning
horizon. Pruning techniques, such as alpha-beta pruning [15],
can be employed in order to prune away branches that
are guaranteed not to be part of the optimal policy. We
propose additional pruning techniques (Theorems 1-3) using
the structural properties of the underlying problem to further
reduce the computational expense for both the minimax tree
search and MCTS. We guarantee that the pruned search tree
still contains the optimal policy for the agent.

The contributions of this paper are as follows: (1) We
introduce a new problem of minimizing detectability and
maximizing visibility as a sequential, two-player, zero-sum
game between an agent and a guard; (2) We propose pruning
strategies that exploit the characteristics of the proposed
problem and that can be applied for both minimax search
tree and Monte-Carlo search tree.

The rest of the paper is organized as follows. We begin
by describing the problem setup in Section II. We present
the two tree search techniques in Section III and present the
pruning techniques in Section IV. The simulation results are
presented in Section V. Section VI summarizes the paper
and outlines future work.

II. PROBLEM FORMULATION

We consider a grid-based environment where each cell
within the environment is associated with a positive reward.
Our approach is to formulate the proposed problem by
appropriately designing the reward function — the agent
obtains positive rewards for maximizing visibility (depending
on the type of missions) and receives negative rewards when
detected by the guard. The reward is used to measure both
the detectability of a guard and the visibility of an agent.

In an exploration mission, the positive reward can be a
function of the number of previously unseen cells visible
from the current agent position (Figure 1-(a)). In a mission
where the objective is to reach a goal position, the positive
reward can be defined as a function of the (inverse of the)
distance to the guard (Figure 1-(b)). The agent receives a
negative reward when it is detected by the guard (i.e., when

(a) The case when the
agent is detected by the
guard.

(b) The case when the
agent is not detected by
the guard.

(c) The agent and the
guard move in a grid-
based environment.

Fig. 2. A negative penalty will be added if the agent is inside the guard’s
visibility polygon (i.e., the blue). In a reconnaissance mission, the area of the
agent’s visibility polygon (i.e., the red) is considered as a positive reward.
Both the agent and the guard move in the grid-based environment, as in (c).

it moves to the same cell as the guard or to a cell that lies
with the guard’s visibility region). At every turn (i.e., the
time step), both the agent and the guard can move to one of
their neighboring cells (i.e., the action).

We make the following assumptions: (1) The agent and
the guard move in the same grid-based map and can move
one edge in one time step. (2) Both the agent and the guard
know the full grid-based map a priori. (3) We assume that
the agent and the guard have known sensing ranges (not
necessarily the same). In this paper, we assume that both
sensing ranges are unlimited for ease of illustration, however,
the case of limited sensing range can easily be incorporated.
(4) The guard has a sensor that can detect the agent when the
agent is within its visibility region. (5) There is no motion
uncertainty associated with the agent and guard actions. (6)
The agent is aware of initial position of the guard.

While the last assumption may seem restrictive, there
are practical scenarios where it is justified. For example,
Bhadauria and Isler [16] describe a visibility-based pursuit-
evasion game where police helicopters can always provide
the global positions of the evader to the pursuer that is
moving on the ground and may not be able to directly see the
pursuer. Thus, even if the guard is not in the field-of-view
of the agent, the agent may still know the actual position of
the guard by communicating with other (aerial) agents. Note
that the agent still does not know where the guard will move
next, thereby, making the problem challenging.

In general, the environment could be any discrete envi-
ronment, not just grids, as long as they satisfy the above
requirements. In fact, continuous environments can be appro-
priately discretized such that they satisfy the above assump-
tions. Medial-axis transformation or skeletonization [17] and
randomized methods such as probabilistic roadmaps [18] and
Rapidly-exploring Random Trees (RRTs) [19] are common
environment discretization techniques. RRTs have been used
to solve two-player, zero-sum pursuit evasion games [20].
Any such suitable technique can be used. The complexity
of the tree search algorithm will depend on the number of
vertices (or grid cells) in a given discretization.

The agent’s objective can be written as:

max
πa(t)

min
πg(t)
{R(πa(t))− η(πa(t), πg(t))P} . (1)



On the other hand, the objective of the guard is:

min
πg(t)

max
πa(t)

{R(πa(t))− η(πa(t), πg(t))P} , (2)

where πa(t) denotes an agent’s path from time step 0 to t.
πg(t) denotes a guard’s path from time step 0 to t. R(πa(t))
denotes the positive reward collected by the agent along the
path from time step 0 to t. P is a constant which gives the
negative reward for the agent whenever it is detected by the
guard. η(πa(t), πg(t)) indicates the total number of times
that the agent is detected from time step 0 to t. For the rest
of the paper, we model R(πa(t)) to be the total area that is
visible from the agent’s path πa(t).

We model this as a discrete, sequential, two-player zero-
sum game between the guard and the agent. In the next
section, we demonstrate how to find the optimal strategy for
this game and explain our proposed pruning methods.

III. SOLUTION: TWO TYPES OF SEARCH TREES

We refer the agent and the guard as MAX and MIN
players, respectively. Even though the agent and the guard
move simultaneously, we can model this problem as a turn-
based game. At each time step, the agent moves first to
maximize the total reward, and then the guard moves to
minimize the total reward. This repeats for a total of T
planning steps. In this section, we first show how to build
a minimax search tree to find the optimal policy. Then, we
show how to construct a Monte-Carlo search tree to solve the
same problem. The advantage of MCTS is that it finds the
optimal policy in lesser computational time than minimax
tree — a finding we corroborate in Section V.

A. Minimax Tree Search

A minimax tree search is a commonly used technique for
solving two-player zero-sum games [15]. Each node stores
the position of the agent, the position of the guard, the
polygon that is visible to the agent along the path from the
root node until the current node, and the number of times the
guard detects the agent along the path from the root node to
the current node. The tree consists of the following types of
nodes:
• Root node: The root node contains the initial positions

of the agent and the guard.
• MAX level: The MAX (i.e., agent) level expands the

tree by creating a new branch for each neighbor of the
agent’s position in its parent node from the previous
level (which can be either the root node or a MIN
level node). The agent’s position and its visibility region
are updated at each level. The guard’s position and the
number of times the agent is detected are not updated
at this level.

• MIN level: The MIN (i.e., guard) level expands the tree
by creating a new branch for each neighbor of the
guard’s position in its parent node (which is always
a MAX level node). The guard’s position is updated
at each level. The total reward is recalculated at this

MAX

MIN

MAX

Root
Agent
Guard

Visibility range

Fig. 3. A (partial) minimax game tree. The root node contains the
initial states of the agent and the guard. Two successive levels of the tree
correspond to one time step. The agent moves first to an available position in
order to maximize the reward (MAX level). The guard moves subsequently
to a neighboring cell to minimize the agent’s reward (MIN level).

level based on the agent’s and guard’s current visibility
polygons and the total number of times the agent is
detected up to the current level.

• Terminal node: The terminal node is always a MIN level
node. When the minimax tree is fully generated (i.e.,
the agent reaches a finite planning horizon), the reward
value of the terminal node can be computed.

The reward values are backpropagated from the terminal
node to the root node. The minimax policy chooses an action
which maximizes and minimizes the backpropagated reward
at the MAX and the MIN nodes, respectively.

Figure 3 illustrates the steps to build a minimax tree that
yields an optimal strategy by enumerating all possible actions
for both the agent and the guard. Algorithm 1 presents the
algorithm of minimax tree search.

B. Monte-Carlo Tree Search

In the naive minimax tree search, the tree is expanded by
considering all the neighbors of a leaf node, one-by-one. In
MCTS, the tree is expanded by carefully selecting one of the
nodes to expand. Which node to select for expansion depends
on the current estimate of the value of the node. The value
is found by simulating many rollouts. In each rollout, we
simulate one instance of the game, starting from the selected
node, by applying some arbitrary policy for the agent and
the guard till the end of the planning horizon, T . The total
reward collected is stored at the corresponding node. This
reward is then used to determine how likely is the node to
be chosen for expansion in future iterations.

Agent Policy

Guard Policy Backpropagation

 Selection Expansion Simulation

Rollout reward

Backpropagation

Fig. 4. Monte-Carlo search tree iteration steps.

Each node in the Monte-Carlo search tree stores the total
reward value, Q(v), and the number of times the node



Algorithm 1: The minimax tree search

1 function Minimax(node, depth, α, β, state)
2 if node is a terminal node then
3 return value
4 else if state is at the agent level then
5 for each child v of node do
6 V ← Minimax(v, depth − 1, α, β,MIN)
7 bestvalue ← max(bestvalue, V )
8 α← max(bestvalue, α)

// Alpha-beta pruning
9 if β ≤ α then

10 break
11 end

// Proposed condition
12 if pruning condition is true then
13 break
14 end
15 return value
16 end
17 else
18 for each child v of node do
19 V ← Minimax(v, depth− 1, α, β,MAX)
20 bestvalue ← min(bestvalue, V )
21 β ← min(bestvalue, β)
22 if β ≤ α then
23 break
24 end
25 if pruning condition is true then
26 break
27 end
28 return value
29 end
30 end
31 Initial← {S0},Map
32 Ar(s), At(s)← Minimax(S0, 1,−∞,∞,MAX)
33 end

is visited, N(v). Each iteration of MCTS consists of the
following four steps [21] (Figure 4):

• Selection (Line 4 in Algorithm 2): Starting from the
root node (in every iteration), the node selection algo-
rithm uses the current reward value to recursively de-
scend through the tree until we reach a node that is not
at the terminal level (i.e., corresponding to time T ) and
has children that have never been visited before. We use
the Upper Confidence Bound (UCB) to determine which
node should be selected (Lines 4–6 in Algorithm 2).
The UCB value takes into account not only the average
of the rollout reward obtained but also the number of
times the node has been visited. If a node is not visited
often, then the second term in the UCB value will be
high, improving its likelihood of getting selected. The
constant c in Lines 4–6 in Algorithm 2 is the weighting
parameter. At the agent level, we choose the node with
the highest UCB value while at the guard level with the
lowest UCB value.

• Expansion (Lines 6–9 in Algorithm 2): Child nodes
(one or more) are added to the selected nodes to expand
the tree. If the child node is at the agent level, the node
denotes one of the available actions for the agent. If the
child node is at the guard level, the node denotes one
of the available actions for the guard. Expansion details
are given in Algorithm 3.

• Rollout (Line 11 in Algorithm 2): A Monte-Carlo
simulation is carried out from the expanded node for the
remaining planning horizon. The agent and the guard
follow a uniformly at random policy. Based on this, the
total reward for this simulation is calculated. Rollout
details are given in Algorithm 4.

• Backpropagation (Lines 13–?? in Algorithm 2): The
total reward found is then used to update the reward
value stored at each of the predecessor nodes.

Algorithm 2: Monte-Carlo Tree Search with Pruning

1 function MCTS(Tree, Initial agent and guard state)
2 Create root node v0 with initial guard and agent

state s0;
3 while maximum number of iterations not reached

do
// Selection

4 vi ← Monte Carlo Selection(Tree, v0)
// Expand or rollout

5 if level(vi) = T and N(vi) = 0 then
// Expand

6 Tree← Expand(Tree, vi)
7 if Newly added node can be pruned then
8 break
9 end

10 else
// Rollout

11 R← Rollout(vi);
12 end

// Backpropagation
13

14 end
15 return Tree
16 end

Given a sufficient number of iterations, the MCTS with
UCB is guaranteed to converge to the optimal policy [22].
However, this may still require building an exponentially
sized tree. In the next section, we present a number of
pruning strategies to reduce the size of the tree. In Section V,
we also evaluate the effect of the number of iterations on the
solution quality.

IV. PRUNING TECHNIQUES

In this section, we present several pruning techniques
to reduce the size of the tree and the computational time
required to build the minimax and the MCTS. Pruning a
node implies that the node will never be expanded (in both
types of trees). In MCTS, if a node is pruned we simply



Algorithm 3: MCTS selection

1 function Monte Carlo Selection(Tree, vi)
2 while level(vi) 6= TERMINAL do
3 if level(vi) = AGENT then
4 vi ← argmax

v′∈children(vi)

Q(v′)
N(v′) + c

√
2 lnN(v′)
N(v′)

5 else
6 vi ← argmin

v′∈children(vi)

Q(v′)
N(v′) + c

√
2 lnN(v′)
N(v′)

7 end
8 end
9 end

Algorithm 4: MCTS rollout

1 function Rollout(v)
2 R← 0
3 while level(v) 6= 2T + 1 do
4 if level(v) = AGENT then
5 v ← choose an agent action at random
6 else
7 v ← choose a guard action at random
8 R← update reward
9 end

10 return R
11 end
12 end

will break to the next iteration of the search. Pruning the
tree results in considerable computational savings which we
quantify in Section V.

In the case of the minimax search tree, we can apply a
classical pruning strategy called alpha-beta pruning [14].
Alpha-beta pruning maintains the minimax values at each
node by exploring the tree in a depth-first fashion. It then
prunes nodes, if a node is clearly dominated by another.
See the textbook by Russell and Norvig [14] for more
details. Alpha-beta pruning is preferable when the tree is
built in a depth first fashion. However, we can exploit
structural properties of this problem to further prune away
nodes without needed to explore a subtree fully. We propose
strategies that find and prune redundant nodes before the
terminal level is reached.

Our proposed pruning techniques apply for both types of
trees. Therefore, in the following we refer to a “search tree”
instead of specifying whether it is minimax or MCTS.

Our first proposed class of pruning techniques (i.e., The-
orems 1 and 2) is based on the properties of the given map.
Consider the MIN level and the MAX level separately. The
main idea of these pruning strategies is to compare two nodes
A and B at the same level of the tree, say the MAX level. In
the worst case, the node A would obtain no future positive
reward while always being detected at each time step of the
rest of the horizon. Likewise, in the best case, the node B
would collect all the remaining positive reward and never be
detected in the future. If the worst-case outcome for node A

is still better than the best-case outcome for node B, then
node B will never be a part of the optimal path. It can thus
be pruned away from the search tree. Consequently, we can
save time that would be otherwise spent computing all of its
successors. Note that these conditions can be checked even
before reaching the terminal node of the subtrees at A or B.

Given a node in the search tree, we denote the remaining
positive reward (unscanned region) for this node by F (·).
Note that we do not need to know F (·) exactly. Instead,
we just need an upper bound on F (·). This can be easily
computed since we know the entire map information a priori.
The total reward collected by the node A and by the node
B from time step 0 to t are denoted by RA(t) and RB(t),
respectively.

Theorem 1: Given a time horizon T , let A and B be two
sibling nodes in the same MAX level of the search tree at
time step t. If RA(t)− (T − t)η ≥ RB(t) +F (B), then the
node B can be pruned without loss of optimality.

Proof: In the case of the node A, the worst case occurs
when in the following T−t steps the agent is always detected
at every remaining step and collects zero additional positive
rewards. After reaching the terminal tree level, the reward
backpropagated to node A will be RA(t)− (T − t)η. For the
node B, the best case occurs in the following T − t steps
when the agent is never detected but obtains all remaining
positive rewards. In the terminal tree level, the node B
collects the reward of RB(t) + F (B).

Since RA(t)− (T − t)η ≥ RB(t)+F (B) and both nodes
are at the MAX level, it implies that the reward returned to
the node A is always greater than that returned to the node
B. Therefore, the node B will not be a part of the optimal
policy and can be pruned without affecting the optimality.

Similarly, consider that the node A and the node B are
located in the MIN level. The same idea of Theorem 1 holds
as follows.

Theorem 2: Given a time horizon T , let A and B be two
sibling nodes in the same MIN level of the search tree at
time step t. If RA(t) + F (A) ≤ RB(t)− (T − t)η, then the
node B can be pruned without loss of optimality.
The proof of Theorem 2 is similar to that of Theorem 1.

The main idea of the second type of pruning strategy (i.e.,
Theorem 3) comes from the past path (or history). If two
different nodes have the same agent and guard position but
one node has a better history than the other, then the other
node can be pruned away.

Here, we denote by SA(π(t)) and SB(π(t)) the total
scanned region in the node A and the node B from time
step 0 to t, respectively.

Theorem 3: Given a time horizon T and 0 < t1 < t2 <
T , let the node A be at the level t1 and the node B be
at the level t2, respectively such that both nodes are at a
MAX level. If (1) the guard’s position stored in the nodes
A and B are the same, (2) SA(π(t1)) ⊃ SB(π(t2)), and (3)
RA(t) > RB(t)+(t2− t1)η, then the node B can be pruned
without loss of optimality.

Proof: With 0 < t1 < t2 < T , we have the node B



appear further down the tree as compared to the node A.
SA(π(t1)) ⊆ SB(π(t2)) indicates that the node A’s scanned
area is a subset of the node B’s scanned area.

Since the nodes A and B contain the same guard and
agent positions, one of the successors of node A contains the
same guard and agent positions as node B. Since RA(t) ≥
RB(t) + (t2 − t1)η and SA(π(t1)) ⊃ SB(π(t2)), the value
backpropagated from the successor of node A will always
be greater than the value backpropagated from the path of
node B. Furthermore, more reward can possibly be collected
by node A since SA(π(t1)) ⊆ SB(π(t2)). Thus, the node
B will never be a part of the optimal path and can then be
pruned away.

V. EVALUATION

In this section, we evaluate the proposed techniques in the
context of a reconnaissance mission. We assume the visibility
range of the agent and the guard are both unlimited (only
restricted by the obstacles in the environment). We use the
VisiLibity library [23] to compute the visibility polygon. The
simulation is executed in MATLAB.

First, we present two qualitative examples that show the
path found by the minimax algorithm. Second, we compare
the computational cost of the two search tree algorithms
with and without pruning. Third, we study the trade-off
between solution quality and computational time by varying
the parameters in MCTS. Finally, we show how to apply the
tree search technique in an online fashion.

A. Qualitative Examples

Figures 5 and 6 show two examples of the policy found
by Monte-Carlo tree search method, using high and low
negative penalty values (P in Equation 1) respectively. Both
the minimax tree search and MCTS can find the same
optimal solution for these instances. We use a 25× 15 grid
environment. With higher negative reward P = 30, the agent
tends to prefer avoiding detection by the guard (Figure 5).
With a lower negative reward P = 3, the agent prefers to
explore more area (Figure 6).

Both tree search methods give the same optimal solution
in both cases (in general, there can be multiple optimal so-
lutions). However, the MCTS finds the optimal solution (for
T = 10) in 40,000 iterations taking a total of approximately
50 minutes. On the other hand, the minimax tree search
required approximately 10 hours to find the optimal solution.
More thorough comparison is in the next subsection.

B. Computational Time Comparisons

We evaluate the computational time required to find the
optimal solution by varying the time horizon T . Figure 7
shows the computational time for the two search algorithms.
The time horizon T ranges from 1 to 5; the tree consists
of 3 to 11 levels. When the time horizon T is less than 3,
the minimax search tree performs better than Monte-Carlo
search tree. This can be attributed to the fact that Monte-
Carlo search requires a certain minimum number of iterations
for the estimated total reward value to converge to the actual

TABLE I
COMPARISION OF THE NUMBER OF NODES GENERATED BY DIFFERENT

PRUNING TECHNIQUES, FROM T = 3 TO T = 6.

Number of nodes generated
Planning horizon T = 3 T = 4 T = 5 T = 6

Brute force 625 1.56E4 3.90E5 9.76E6

With only
alpha-beta

Maximum 403 3844 7.08E4 1.70E6
Median 206 2822 1.80E4 2.46E5

Minimum 104 1444 7860 1.86E5
With all
pruning

techniques

Maximum 388 1389 3.3E4 4.81E5
Median 105 639 4064 3.74E4

Minimum 78 563 3016 2.94E4

one. When the horizon T is increased, the Monte-Carlo
search finds the solution faster since it does not typically
require generating a full search tree. We only compare up to
T = 5 since beyond this value, we expect Monte-Carlo to
be much faster than minimax search tree. Furthermore, the
computational time required for finding the optimal solution
for the minimax tree beyond T = 5 is prohibitively large.

Figure 7, as expected, shows that the computational time
with pruning is lower than that without pruning for both
techniques. Next, we study this effect in more details.

a) Minimax Tree.: We show the effectiveness of the
pruning algorithm by comparing the number of nodes gen-
erated by the brute force technique (no pruning) with the
minimax tree with pruning. We generate the initial position
of the agent and the guard randomly. We find the optimal
path for various horizons ranging from T = 2 to T = 7.
Therefore, the minimax tree depth ranges from 5 to 15 (if
the planning horizon is T , then we need a game search tree
with 2T + 1 level).

The efficiency of the proposed pruning algorithm is pre-
sented in Figure 8 and Table I. Figure 8 shows the combined
effect of all pruning techniques by comparing it the number
of nodes without pruning. Table I shows the individual effect
of alpha-beta pruning and the combined effect of all pruning
techniques.

Since the efficiency of pruning is highly dependent on
the order in which the neighboring nodes are added to the
tree first, different results can be achieved by changing the
order in which the children nodes are added to the minimax
tree. Figure 8 and Table I compare the number of nodes
generated. Figure 8 shows the effect of all pruning techniques
and Table I shows the effect of individual pruning techniques.
If we enumerate all the nodes by brute force, in the worst
case, it takes 3.05 × 108 nodes to find the optimal path for
a horizon of T = 7. By applying the pruning algorithm, the
best case only generates 2.45× 105 nodes to find the same
optimal solution.

b) Monte-Carlo Tree Search.: The minimax tree search
method always terminates when it finds the optimal solution.
On the other hand, the MCTS terminates after a pre-defined
number of iterations. If this number is too low, then it
is possible that the MCTS returns a sub-optimal solution.
We study the trade-off between computational time and the
number of iterations for the MCTS.

Figure 9 shows the fraction of the times we find the
optimal solution as a function of the number of iterations



Fig. 5. Qualitative example (higher penalty P = 30): Path for the agent (red) and the guard (blue) is given by MCTS for T = 10. The environment is
a 20 × 15 grid. With a higher penalty, the agent prefers paths where it can hide from the guard at the expense of the area explored (from left to right,
t = 2, 4, 6, 8, 10.). Figure 6 shows the case with a lower penalty.

Fig. 6. Qualitative example (lower penalty P = 3): With a lower penalty, path for the agent (red) and the guard (blue) is given by MCTS for T = 10.
The agent prefers paths where it increases the area explored at the expense of being detected often. From left to right, t = 2, 4, 6, 8, 10.
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Fig. 7. Comparison of the time required to find the optimal solution with
the minimax tree and the Monte-Carlo tree, with and without pruning. Note
that the y axis is in log scale.
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Fig. 9. Effect of increasing the number of iterations in MCTS, with and
without pruning, on the the likelihood of finding the optimal solution. The
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was able to find the optimal solution given by the minimax tree for T = 3.
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Fig. 10. Effect of the planning horizon on the number of iterations required
to find the optimal solution for MCTS with pruning.

when T = 3 in a 10×10 grid map. We first find the optimal
solution using a minimax tree. Then, we run the MCTS for
a fixed number of iterations and verify if the best solution
found has the same value as the optimal. The X-axis in this
figure is the number of iterations in MCTS.

We make the following observations from Figure 9: (1)
The proposed pruning strategy increases the (empirical)
likelihood of finding the optimal solution in the same number
of iterations; and (2) The probability of finding the optimal
solution grows as the number of iterations grows.

The number of iterations required to find the optimal
solution also depends on the planning horizon. Figure 10
shows the effect of the planning horizon over the number of
iterations required to find the optimal solution. Note that even
though the likelihood of finding an optimal solution increases
with more iteration times in general, it is always possible
that only a suboptimal is found due to “overfitting” caused
by the UCB selection rule. Therefore, for the following
simulations, we run the MCTS multiple times and find out
how often we find the optimal solution within a given number
of iterations. If we find the optimal solution 80% or more
times, we consider it as success. We find that the number
of iterations required to find success 80% or more times
increases exponentially as we vary the planning horizon.

VI. CONCLUSION AND DISCUSSION

We introduce a new problem of maximizing visibility and
minimizing detectability in an environment with an adversar-
ial guard. The problem can be solved using a minimax and



the MCTS techniques to obtain an optimal strategy for the
agent. Our main contribution is a set of pruning techniques
that reduce the size of the search tree while still guaranteeing
optimality.

Despite the promising reduction in the game tree, the
method can still be time consuming when the planning
horizon increases or if the environment becomes large and/or
complex. Our immediate work is to further reduce the com-
putational effort using MCTS with macro-actions [24], and
by exploiting the underlying geometry of the environment.

LEGAL

DISTRIBUTION A. Approved for public release: distri-
bution unlimited. This research was supported in part by
the Automotive Research Center (ARC) at the University
of Michigan, with funding and support by the Department
of Defense under Contract No. W56HZV-14-2-0001.

REFERENCES

[1] P. Tokekar and V. Kumar, “Visibility-based persistent monitoring
with robot teams,” in Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on. IEEE, 2015, pp. 3387–3394.

[2] C. Peng and V. Isler, “View selection with geometric uncertainty
modeling,” arXiv preprint arXiv:1704.00085, 2017.

[3] A. Kim and R. M. Eustice, “Active visual slam for robotic area cov-
erage: Theory and experiment,” The International Journal of Robotics
Research, vol. 34, no. 4-5, pp. 457–475, 2015.

[4] G. Hollinger, S. Singh, J. Djugash, and A. Kehagias, “Efficient
multi-robot search for a moving target,” The International Journal
of Robotics Research, vol. 28, no. 2, pp. 201–219, 2009.

[5] S. Carlsson and B. J. Nilsson, “Computing vision points in polygons,”
Algorithmica, vol. 24, no. 1, pp. 50–75, 1999.

[6] J. O’rourke, Art gallery theorems and algorithms. Oxford University
Press Oxford, 1987.

[7] Z. Zhang and P. Tokekar, “Non-myopic target tracking strategies for
non-linear systems,” in Decision and Control (CDC), 2016 IEEE 55th
Conference on. IEEE, 2016, pp. 5591–5596.

[8] N. M. Stiffler and J. M. OKane, “Complete and optimal visibility-
based pursuit-evasion,” The International Journal of Robotics Re-
search, vol. 36, no. 8, pp. 923–946, 2017.

[9] V. Macias, I. Becerra, R. Murrieta-Cid, H. Becerra, and S. Hutchinson,
“Image feedback based optimal control and the value of information
in a differential game,” Automatica, vol. 90, pp. 271–285, April 2018.

[10] S. Carlsson, H. Jonsson, and B. J. Nilsson, “Finding the shortest
watchman route in a simple polygon,” Discrete & Computational
Geometry, vol. 22, no. 3, pp. 377–402, 1999.

[11] S. D. Bopardikar, F. Bullo, and J. P. Hespanha, “Sensing limitations
in the lion and man problem,” in American Control Conference, 2007.
ACC’07. IEEE, 2007, pp. 5958–5963.

[12] S. Jin and Z. Qu, “A heuristic task scheduling for multi-pursuer multi-
evader games,” in Information and Automation (ICIA), 2011 IEEE
International Conference on. IEEE, 2011, pp. 528–533.

[13] S. Gelly and Y. Wang, “Exploration exploitation in go: Uct for monte-
carlo go,” in NIPS: Neural Information Processing Systems Conference
On-line trading of Exploration and Exploitation Workshop, 2006.

[14] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Prentice Hall Press, 2009.

[15] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited,, 2016.

[16] D. Bhadauria and V. Isler, “Capturing an evader in a polygonal
environment with obstacles.” in IJCAI, 2011, pp. 2054–2059.

[17] M. Volkov, A. Cornejo, N. Lynch, and D. Rus, “Environment charac-
terization for non-recontaminating frontier-based robotic exploration,”
in International Conference on Principles and Practice of Multi-Agent
Systems. Springer, 2011, pp. 19–35.

[18] L. E. Kavraki, M. N. Kolountzakis, and J.-C. Latombe, “Analysis of
probabilistic roadmaps for path planning,” in Robotics and Automation,
1996. Proceedings., 1996 IEEE International Conference on, vol. 4.
IEEE, 1996, pp. 3020–3025.

[19] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[20] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for a class of pursuit-evasion games,” in Algorithmic foundations of
robotics IX. Springer, 2010, pp. 71–87.

[21] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-carlo tree
search: A new framework for game ai.” in AIIDE, 2008.

[22] H. Baier and M. H. Winands, “Monte-carlo tree search and minimax
hybrids,” in Computational Intelligence in Games (CIG), 2013 IEEE
Conference on. IEEE, 2013, pp. 1–8.

[23] K. J. Obermeyer and Contributors, “The visilibity library,” https:
//karlobermeyer.github.io/VisiLibity1/.

[24] Z. Lim, L. Sun, and D. Hsu, “Monte carlo value iteration with macro-
actions,” in Advances in Neural Information Processing Systems, 2011,
pp. 1287–1295.

https://karlobermeyer.github.io/VisiLibity1/
https://karlobermeyer.github.io/VisiLibity1/

	I Introduction
	II Problem Formulation
	III Solution: Two Types of Search Trees 
	III-A Minimax Tree Search
	III-B Monte-Carlo Tree Search

	IV Pruning Techniques
	V Evaluation
	V-A Qualitative Examples
	V-B Computational Time Comparisons

	VI Conclusion and Discussion
	References

